6533b825fe1ef96bd128205c
RESEARCH PRODUCT
Positive solutions for singular double phase problems
Calogero VetroNikolaos S. PapageorgiouDušan Repovšsubject
Class (set theory)Double phase problemNehari manifold01 natural sciencesDirichlet distributionsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: MathematicsApplied mathematics0101 mathematics35J60 35D05Positive solutionsParametric statisticsMathematicsApplied Mathematics010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryDifferential operatorTerm (time)010101 applied mathematicsDouble phaseDiscontinuous weightsymbolsAnalysisAnalysis of PDEs (math.AP)description
Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |