6533b825fe1ef96bd1282778
RESEARCH PRODUCT
Dissipative operators and differential equations on Banach spaces
C. A. MarinovPekka Neittaanmäkisubject
CombinatoricsPhysicsFunctional analysisNuclear operatorBanach spaceDissipative operatorType (model theory)Operator theoryLp spaceC0-semigroupdescription
If we consider the initial value problem Inline Equation $$x'(t) = f(t,x(t)),{\text{ }}x(0) = {x_0}$$ on the real line, it is well known that one—sided bounds like Inline Equation $$\left[ {f(t,x) - f\left( {t,y} \right)} \right]\left( {x - {\text{y}}} \right) \leqslant \omega {\left( {x - y} \right)^2}$$ give much better information about the behaviour of solutions than the Lipschitz- type estimates Inline Equation $$ \left| {f\left( {t,x} \right) - f\left( {t,y} \right)} \right| \leqslant L\left| {x - y} \right|,$$ because ω, unlike L, may be negative.
year | journal | country | edition | language |
---|---|---|---|---|
1991-01-01 |