6533b825fe1ef96bd1282778

RESEARCH PRODUCT

Dissipative operators and differential equations on Banach spaces

C. A. MarinovPekka Neittaanmäki

subject

CombinatoricsPhysicsFunctional analysisNuclear operatorBanach spaceDissipative operatorType (model theory)Operator theoryLp spaceC0-semigroup

description

If we consider the initial value problem Inline Equation $$x'(t) = f(t,x(t)),{\text{ }}x(0) = {x_0}$$ on the real line, it is well known that one—sided bounds like Inline Equation $$\left[ {f(t,x) - f\left( {t,y} \right)} \right]\left( {x - {\text{y}}} \right) \leqslant \omega {\left( {x - y} \right)^2}$$ give much better information about the behaviour of solutions than the Lipschitz- type estimates Inline Equation $$ \left| {f\left( {t,x} \right) - f\left( {t,y} \right)} \right| \leqslant L\left| {x - y} \right|,$$ because ω, unlike L, may be negative.

https://doi.org/10.1007/978-94-011-3440-8_1