6533b825fe1ef96bd1282866
RESEARCH PRODUCT
Ferromagnetic kinetic exchange interaction in magnetic insulators
Dan LiuDan LiuVeacheslav VieruVeacheslav VieruZhishuo HuangAkseli MansikkamäkiAkseli MansikkamäkiLiviu F. ChibotaruNaoya IwaharaNaoya Iwaharasubject
Work (thermodynamics)magneettiset ominaisuudetMaterials scienceelectronic-structurePhysics MultidisciplinaryFOS: Physical sciencesmagnetic couplingelektronitmagneettikentätKinetic energyteoriatORBITAL PHYSICSCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceANTIFERROMAGNETISMHUBBARD-MODELPhysics - Chemical PhysicsSUPEREXCHANGE INTERACTIONSdensity functional theoryChemical Physics (physics.chem-ph)Condensed Matter - Materials SciencecomplexesScience & TechnologyStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCRYSTALmagnetic insulatorsPhysicsSUPERCONDUCTIVITYExchange interactionMaterials Science (cond-mat.mtrl-sci)transitionORDERhubbard-modelsuperexchange interactionsWannier function methodsELECTRONIC-STRUCTUREFerromagnetismPhysical SciencesCondensed Matter::Strongly Correlated ElectronsCOMPLEXESTRANSITIONdescription
The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{3+}$-Fe$^{3+}$ complex.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-16 |