6533b825fe1ef96bd1282959

RESEARCH PRODUCT

Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer.

Antonella D'anneoP. Di MarcoR Di FioreGiovanni TesoriereGiovanni TesoriereAnnalisa GuercioRoberta MartinezRenza VentoRenza VentoDaniela CarlisiMarianna LauricellaS. Di BellaSonia EmanueleRoberto Puleio

subject

Cancer ResearchautophagyCell SurvivalparthenolideFas-Associated Death Domain ProteinImmunologyCASP8 and FADD-Like Apoptosis Regulating ProteinBreast Neoplasmsparthenolide; ROS; NOX; autophagy; breast cancer xenograft.MiceCellular and Molecular Neurosciencechemistry.chemical_compoundDownregulation and upregulationCell Line TumorSettore BIO/10 - BiochimicaAnimalsHumansParthenolidePropidium iodidebreast cancer xenograftMembrane Potential Mitochondrialchemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologybreast cancer xenograft.SuperoxideNF-kappa BRNA-Binding ProteinsROSCell BiologyNOXXenograft Model Antitumor AssaysMolecular biologyNuclear Pore Complex ProteinsVascular endothelial growth factorchemistryCell cultureCancer researchbiology.proteinCalciumFemaleOriginal ArticleReactive Oxygen SpeciesSesquiterpenes

description

Triple-negative breast cancers (TNBCs) are clinically aggressive forms associated with a poor prognosis. We evaluated the cytotoxic effect exerted on triple-negative MDA-MB231 breast cancer cells both by parthenolide and its soluble analogue dimethylamino parthenolide (DMAPT) and explored the underlying molecular mechanism. The drugs induced a dose- and time-dependent decrement in cell viability, which was not prevented by the caspase inhibitor z-VAD-fmk. In particular in the first hours of treatment (1–3 h), parthenolide and DMAPT strongly stimulated reactive oxygen species (ROS) generation. The drugs induced production of superoxide anion by activating NADPH oxidase. ROS generation caused depletion of thiol groups and glutathione, activation of c-Jun N-terminal kinase (JNK) and downregulation of nuclear factor kB (NF-kB). During this first phase, parthenolide and DMAPT also stimulated autophagic process, as suggested by the enhanced expression of beclin-1, the conversion of microtubule-associated protein light chain 3-I (LC3-I) to LC3-II and the increase in the number of cells positive to monodansylcadaverine. Finally, the drugs increased RIP-1 expression. This effect was accompanied by a decrement of pro-caspase 8, while its cleaved form was not detected and the expression of c-FLIPS markedly increased. Prolonging the treatment (5–20 h) ROS generation favoured dissipation of mitochondrial membrane potential and the appearance of necrotic events, as suggested by the increased number of cells positive to propidium iodide staining. The administration of DMAPT in nude mice bearing xenografts of MDA-MB231 cells resulted in a significant inhibition of tumour growth, an increment of animal survival and a marked reduction of the lung area invaded by metastasis. Immunohistochemistry data revealed that treatment with DMAPT reduced the levels of NF-kB, metalloproteinase-2 and -9 and vascular endothelial growth factor, while induced upregulation of phosphorylated JNK. Taken together, our data suggest a possible use of parthenolide for the treatment of TNBCs.

10.1038/cddis.2013.415http://www.nature.com/cddis/journal/v4/n10/full/cddis2013415a.html