6533b825fe1ef96bd1283254
RESEARCH PRODUCT
Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric A(x)Ba(1-x)Nb(2)O(6) (A: Sr,Ca)
Marco BettinelliJavier Ruiz-fuertesJavier Ruiz-fuertesManfred BurianekManfred MühlbergOscar GomisAlfredo Segurasubject
010302 applied physicsDiffractionPhase transitionMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physics02 engineering and technologyPhoton energy021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityLight scatteringCRYSTALSTEMPERATURE-DEPENDENCEAbsorption edgeCALCIUM BARIUM NIOBATEFISICA APLICADA0103 physical sciencesDirect and indirect band gaps0210 nano-technologyCALCIUM BARIUM NIOBATE TEMPERATURE-DEPENDENCE CRYSTALSdescription
[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to paraelelectric phase transition at 4 GPa, the light scattering produced by micro-and nano-ferroelectric domains at 3.3 eV in Ca0.28Ba0.72Nb2O6 has been probed. The direct bandgap remains virtually constant under compression with a drop of only 0.01 eV around the phase transition. Interestingly, we have also found that light scattering by the polar nanoregions in the paraelectric phase is comparable to the dispersion due to ferroelectric microdomains in the ferroelectric state. Finally, we have obtained that the bulk modulus of the ferroelectric phase of Ca0.28Ba0.72Nb2O6 is B-0 = 222(9) GPa. Published by AIP Publishing.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-22 |