6533b825fe1ef96bd1283271
RESEARCH PRODUCT
An adaptive approach to learning the preferences of users in a social network using weak estimators
B. John OommenAnis YazidiOle-christopher Granmosubject
Profiling (computer programming)Service (systems architecture)Social networkbusiness.industryComputer scienceEstimatorRecommender systemMachine learningcomputer.software_genreVDP::Mathematics and natural science: 400::Mathematics: 410Target distributionVDP::Mathematics and natural science: 400::Information and communication science: 420time varying preferencesweak estimatorsTargeted advertisingRange (statistics)Artificial intelligencebusinesscomputerSoftwareuser's profilingInformation Systemsdescription
Published version of an article in the journal: Journal of Information Processing Systems. Also available from the publisher at: http://dx.doi.org/10.3745/JIPS.2012.8.2.191 - Open Access Since a social network by definition is so diverse, the problem of estimating the preferences of its users is becoming increasingly essential for personalized applications, which range from service recommender systems to the targeted advertising of services. However, unlike traditional estimation problems where the underlying target distribution is stationary; estimating a user's interests typically involves non-stationary distributions. The consequent time varying nature of the distribution to be tracked imposes stringent constraints on the "unlearning"capabilities of the estimator used. Therefore, resorting to strong estimators that converge with a probability of 1 is inefficient since they rely on the assumption that the distribution of the user's preferences is stationary. In this vein, we propose to use a family of stochastic-learning based Weak estimators for learning and tracking a user's time varying interests. Experimental results demonstrate that our proposed paradigm outperforms some of the traditional legacy approaches that represent the state-of-the-art technology.
year | journal | country | edition | language |
---|---|---|---|---|
2012-06-30 |