6533b825fe1ef96bd12832b4

RESEARCH PRODUCT

Efficient electronic cooling in heavily doped silicon by quasiparticle tunneling

Mika PrunnilaJouni AhopeltoAlexander SavinJukka P. PekolaAntti ManninenP. Kivinen

subject

SuperconductivityMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsSiliconPhysics::Instrumentation and Detectorsbusiness.industrySchottky effectDopingchemistry.chemical_elementSilicon on insulatorCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceSemiconductorchemistryCondensed Matter::SuperconductivityQuasiparticleCondensed Matter::Strongly Correlated ElectronsbusinessQuantum tunnelling

description

Cooling of electrons in a heavily doped silicon by quasiparticle tunneling using a superconductor–semiconductor–superconductor double-Schottky-junction structure is demonstrated at low temperatures. In this work, we use Al as the superconductor and thin silicon-on-insulator (SOI) film as the semiconductor. The electron–phonon coupling is measured for the SOI film and the low value of the coupling is shown to be the origin of the observed significant cooling effect.

https://doi.org/10.1063/1.1399313