0000000000014573
AUTHOR
Jouni Ahopelto
Nanoimprint lithography for organic electronics
Thin films made of organic semiconductors (α-sexithiophene, PDAS and PBAS) have been printed and the impact on morphology studied by optical, atomic force and electron microscopy. Surfaces in contact with the stamp during printing undergo a change towards smoother and more ordered material at the macromolecular scale. Interdigitated nanoelectrodes to be used as source and drain in TFTs have been made and printed down to 100 nm. PDAS and PBAS can be printed at room temperature and preserve their printed feature provided they are cross-linked afterwards.
LONG TERM CHARGE RELAXATION IN SILICON SINGLE ELECTRON TRANSISTORS
Potential of amorphous Mo–Si–N films for nanoelectronic applications
The properties of amorphous metallic molybdenum–silicon–nitrogen (Mo–Si–N) films were characterised for use in nanoelectronic applications. The films were deposited by co-sputtering of molybdenum and silicon targets in a gas mixture of argon and nitrogen. The atomic composition, microstructure and surface roughness were studied by RBS, TEM and AFM analyses, respectively. The electrical properties were investigated in the temperature range 80 mK to 300 K. No transition into a superconductive state was observed. Nanoscale wires were fabricated using electron beam lithography with their properties measured as a function of temperature.
Single electron transistor fabricated on heavily doped silicon-on-insulator substrate
Experiments on side-gated silicon single electron transistors (SET) fabricated on a heavily doped thin silicon-on-insulator substrate are reported. Some of the devices showed single-island-like and some multi-island-like behaviour, but the properties of individual samples changed with time. Single-electron gate modulation was observable up to T=100 K, at least. A slow response of SET current to a large change in gate voltage was observed, but the process speeded up under illumination.
Exploring integration prospects of opal-based photonic crystals
Different methods of functionalisation of thin opal films are discussed, including synthesis of opals on pre-patterned substrates, post-synthesis electron beam lithography, preparation of opals with heterogeneous photonic band gap structure and integrating opals with light sources. These approaches have been tested experimentally and key technological problems have been identified.
Self-assembled three-dimensional inverted photonic crystals on a photonic chip
Three dimensional photonic crystals (PhCs) exhibiting a full photonic band gap have high potential in optical signal processing and detector applications. However, the challenges in the integration of the 3D PhCs into photonic circuits have so far hindered their exploitation in real devices. This article demonstrates the fabrication of 3D PhCs exploiting the capillary directed self-assembly (CDSA) of monodisperse colloidal silica spheres, their inversion to silicon shells, and integration with silicon waveguides. The measured transmission characteristics agree with numerical predictions and provide strong indication of a full photonic band gap in the inverted 3D photonic crystals at wavelen…
Micromoulding of three-dimensional photonic crystals on silicon substrates
International audience; The growth of three-dimensional photonic crystals (PhCs) on patterned silicon substrates is reported. It is shown that deep trenches can be uniformly filled by a self-assembly of polymer microspheres, in a close-packed face-centred cubic lattice. The crystalline quality is compared for different channel widths. These observations are confirmed by optical reflectance measurements in the visible range, showing a bandwidth of enhanced reflection. The possibility to detach the PhC, i.e. to use the substrate as a mould, is also demonstrated. The potential of this approach for building PhC-based complex architectures is discussed.
Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures
We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on heavily doped n-type Si samples with electron concentration in the range $3.5-16.0\times 10^{25}$ m$^{-3}$ are performed at sub-1 K temperatures. We find a good agreement between the theory and the experiment.
Efficient electronic cooling in heavily doped silicon by quasiparticle tunneling
Cooling of electrons in a heavily doped silicon by quasiparticle tunneling using a superconductor–semiconductor–superconductor double-Schottky-junction structure is demonstrated at low temperatures. In this work, we use Al as the superconductor and thin silicon-on-insulator (SOI) film as the semiconductor. The electron–phonon coupling is measured for the SOI film and the low value of the coupling is shown to be the origin of the observed significant cooling effect.
Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography
The direct patterning of functional semiconducting polymers (see Figure) has been achieved with a nanoimprint lithography technique. The room‐temperature process described is time‐saving as repeated temperature cycling is not required. In addition, due to the direct patterning approach the need for further processing steps (plasma treatment) to pattern the underlying semiconducting material is eliminated.
Silicon Single Electron Transistors with Single and Multi Dot Characteristics
AbstractSilicon single electron transistors (SET) with side gate have been fabricated on a heavily doped silicon-on-insulator (SOI) substrate. Samples demonstrate two types of characteristics: some of them demonstrate multiple dot behavior and one demonstrates single dot behavior in a wide temperature range. SETs demonstrate oscillations of drain-source current and changes in the width of the Coulomb blockade region with change of gate voltage at least up to 100 K. At temperature below 20 K long-term oscillations (relaxation) of source-drain current after switching the gate voltage has been observed in both multiple dot and single dot samples. Illumination affects both the characteristics o…
2D photonic defect layers in 3D inverted opals on Si platforms
Dielectric spheres synthesised for the fabrication of self-organized photonic crystals such as opals offer large opportunities for the design of novel nanophotonic devices. In this paper, we show a hexagonal superlattice monolayer of dielectric spheres inscribed on a 3D colloidal photonic crystal by e-beam lithography. The crystal is produced by a variation of the vertical drawing deposition method assisted by an acoustic field. The structures were chosen after simulations showed that a hexagonal super-lattice monolayer in air exhibits an even photonic band gap below the light cone if the refractive index of the spheres is higher than 1.93.
Electron–phonon coupling in degenerate silicon-on-insulator film probed using superconducting Schottky junctions
Abstract Energy flow rate in degenerate n-type silicon-on-insulator (SOI) film is studied at low temperatures. The electrons are heated above the lattice temperature by electric field and the electron temperature is measured via semiconductor–superconductor quasiparticle tunneling. The energy flow rate in the system is found to be proportional to T 5 , indicating that electron–phonon relaxation rate and electron–phonon phase breaking rate are proportional to T 3 . The electron–phonon system in the SOI film is in the “dirty limit” where the electron mean free path is smaller than the inverse of the thermal phonon wave vector.
Integrated SINIS refrigerators for efficient cooling of cryogenic detectors
In this paper we report recent results obtained with large area superconductor-insulator-normal metal-insulator-superconductor tunnel junction coolers. With the devices we have successfully demonstrated electronic cooling from 260 mK to 80 mK with a cooling power of 20 pW at 80 mK. At present, we are focusing on obtaining similar performance in cooling cryogenic detectors. Additionally, we present recent results of successful operation of a metalsemiconductor structure with a Schottky barrier acting as the tunnel barrier and the possibility to use this kind of structures for on-chip cooling.
ELECTRON-PHONON COUPLING IN HEAVILY DOPED SILICON
The coupling constant in electron-phonon interaction is a very important issue in nanoscale applications. We have measured this constant in heavily doped silicon. Electron-phonon interaction is proportional to T6 and the coupling constant is found to be 1.5 × 108 W/K5m³, which is about one tenth of the value in normal metals.
Application of superconductor-semiconductor Schottky barrier for electron cooling
Abstract Electronic cooling in superconductor–semiconductor–superconductor structures at sub kelvin temperatures has been demonstrated. Effect of the carrier concentration in the semiconductor on performance of the micro-cooler has been investigated.
Electron-phonon heat transport and electronic thermal conductivity in heavily doped silicon-on-insulator film
Electron–phonon interaction and electronic thermal conductivity have been investigated in heavily doped silicon at subKelvin temperatures. The heat flow between electron and phonon systems is found to be proportional to T6. Utilization of a superconductor–semiconductor–superconductor thermometer enables a precise measurement of electron and substrate temperatures. The electronic thermal conductivity is consistent with the Wiedemann–Franz law. Peer reviewed
Crystallization of silica opals onto patterned silicon wafer
We report on fabrication of high quality opaline photonic crystals from large silica spheres, self-assembled in hydrophilic trenches of silicon wafers by using a drawing apparatus with a combination of stirring. The achievements here reported comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, a filling of the trenches up to the top, leading to a spatially uniform film thickness, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry, verified using optical measurements. The opal lattice was found to match the pattern…
Electronic cooling and hot electron effects in heavily doped silicon-on-insulator film
The influence of carrier concentration in silicon-on-insulator film on the thermal characteristics of semiconductor and performance of the superconductor-semiconductor-superconductor micro-coolers have been investigated at sub kelvin temperatures. The overheating of the lattice in heavily doped silicon film must be taken into account in the analysis of electron-phonon coupling experiment and operation of the cooler device. The heat flow between electrons and phonons in heavily doped silicon films is found to be proportional to T6, which is in accordance with theoretical prediction for dirty limit. Increasing the doping level in the semiconductor considerably increases both the efficiency of…
Silicon quantum point contact with aluminum gate
Fabrication and electrical properties of silicon quantum point contacts are reported. The devices are fabricated on bonded silicon on insulator (SOI) wafers by combining CMOS process steps and e-beam lithography. Mobility of 9000 cm2 Vs−1 is measured for a 60 nm-thick SOI film at 10 K. Weak localization data is used to estimate the phase coherence length at 4.2 K The point contacts show step like behaviour in linear response conductance at 1.5 K. At 200 mK universal conductance fluctuations begin to dominate the conductance curve. The effective diameter of quantum point constrictions of the devices are estimated to be 30–40 nm. This estimate is based on TEM analysis of test structures and A…
Towards Si-based photonic circuits: Integrating photonic crystals in silicon-on-insulator platforms
In the context of Si-based photonics, we report on a strategy to integrate two optical components, a 3D photonic crystal light emitter and a waveguide, in a silicon-on-insulator patterned substrate. Self-assembled colloidal photonic crystals are produced with high crystalline quality and spatial selectivity. Plane wave expansion and finite-difference time-domain have been used to find suitable configurations for positioning emitters and waveguides. The first steps toward the realisation of these configurations are presented.