6533b825fe1ef96bd12832d1

RESEARCH PRODUCT

Interaction of wild-type and naturally occurring deleted variants of hepatitis B virus core polypeptides leads to formation of mosaic particles

Andris KazaksDetlev H. KrügerAndris DishlersPaul PumpensHelga MeiselPetra Preikschat

subject

Hepatitis B virusBlotting WesternMutantBiophysicsBiologymedicine.disease_causeBiochemistryGenomeHepatitis B virus PRE betaLiver diseaseStructural BiologyEscherichia coliGeneticsmedicineProtein Structure QuaternaryMolecular BiologyEscherichia coliSequence DeletionHepatitis B virusImmunodominant EpitopesHepatitis B virus coreViral Core ProteinsVirus AssemblyWild typeGenetic VariationCell Biologymedicine.diseaseDimer formationHepatitis B Core AntigensPrecipitin TestsVirologyMolecular biologyRecombinant ProteinsMosaic particleMicroscopy ElectronPeptidesDimerizationC gene deletionProtein Binding

description

AbstractThe simultaneous presence of hepatitis B virus (HBV) genomes carrying wild-type (wt) and in-frame deleted variants of the HBV core gene has been identified as a typical feature of HBV-infected renal transplant patients with severe liver disease. To investigate possible interactions of wt and deleted core polypeptides a two-vector Escherichia coli expression system ensuring their concomitant synthesis has been developed. Co-expression of wt and a mutant core lacking 17 amino acid residues (77–93) within the immunodominant region led to the formation of mosaic particles, whereas the mutant alone was incapable of self-assembly.

https://doi.org/10.1016/s0014-5793(00)01836-6