6533b825fe1ef96bd12832e8
RESEARCH PRODUCT
Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation
Christopher D. ReinkemeierEdward A. Lemkesubject
Protein designComputational biologyBiology2D phase separationArticleGeneral Biochemistry Genetics and Molecular BiologySynthetic biologyEukaryotic translationOrganelleHumansRNA MessengerAmino AcidsOrganellesmembrane signalingsynthetic biomolecular condensatesProteinsTranslation (biology)Intracellular MembranesProtein engineeringGenetic codeenzyme engineeringHEK293 Cellsgenetic code expansionEukaryotic CellsGenetic CodeProtein Biosynthesisorthogonal translationsynthetic biologyRibosomesFunction (biology)description
Summary Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use these film-like organelles to equip eukaryotic cells with dual orthogonal expanded genetic codes that enable the specific reprogramming of distinct translational machineries with single-residue precision. The ability to spatially tune the output of translation within tens of nanometers is not only important for synthetic biology but has implications for understanding the function of membrane-associated protein condensation in cells.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 | Cell |