6533b826fe1ef96bd1283c11

RESEARCH PRODUCT

Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern.

Luca CozzutoEugenio NotomistaBarbara NasoPiergiuseppe CantielloAlberto Di DonatoFrancesco SalvatoreValeria D'argenioGiovanni PaolellaLorenzo DuranteViviana IzzoLuca TronconeMauro PetrilloValeria Cafaro

subject

NovosphingobiumSphingomonadDe novo sequencing; Novosphingobium sp. PP1Y; Sphingomonads; Aromatic pollutant compounds/bioremediationAromatic pollutant compoundComputational biologyNovosphingobium sp. PP1YAromatic pollutant compounds/bioremediationGenomeSphingomonadsDNA sequencingDe novo sequencingbioremediationNext generation sequencingGeneticsPhylogenyWhole genome sequencingGeneticschemistry.chemical_classificationbiologyHigh-Throughput Nucleotide SequencingQuorum SensingSequence Analysis DNAbiology.organism_classificationSphingomonadaceaeSphingomonadaceaeQuorum sensingBiodegradation EnvironmentalchemistryGenes BacterialEnergy sourceAromatic hydrocarbonMetabolic Networks and PathwaysResearch ArticleBiotechnology

description

Background Novosphingobium sp. strain PP1Y is a marine α-proteobacterium adapted to grow at the water/fuel oil interface. It exploits the aromatic fraction of fuel oils as a carbon and energy source. PP1Y is able to grow on a wide range of mono-, poly- and heterocyclic aromatic hydrocarbons. Here, we report the complete functional annotation of the whole Novosphingobium genome. Results PP1Y genome analysis and its comparison with other Sphingomonadal genomes has yielded novel insights into the molecular basis of PP1Y’s phenotypic traits, such as its peculiar ability to encapsulate and degrade the aromatic fraction of fuel oils. In particular, we have identified and dissected several highly specialized metabolic pathways involved in: (i) aromatic hydrocarbon degradation; (ii) resistance to toxic compounds; and (iii) the quorum sensing mechanism. Conclusions In summary, the unraveling of the entire PP1Y genome sequence has provided important insight into PP1Y metabolism and, most importantly, has opened new perspectives about the possibility of its manipulation for bioremediation purposes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-384) contains supplementary material, which is available to authorized users.

10.1186/1471-2164-15-384http://hdl.handle.net/11386/4372053