6533b826fe1ef96bd1283c6e

RESEARCH PRODUCT

Modeling Forest Tree Data Using Sequential Spatial Point Processes

Antti PenttinenAnna-kaisa YlitaloLauri MehtätaloMatti MaltamoPetteri PackalenAdil Yazigi

subject

Statistics and Probability010504 meteorology & atmospheric scienceshistory-dependent modelpaikkatietoanalyysi01 natural sciencesPoint process010104 statistics & probabilityilmakuvakartoitusfunctional summary statisticsFeature (machine learning)spatial point processes0101 mathematicsmaximum likelihoodtilastolliset mallitAerial image0105 earth and related environmental sciencesGeneral Environmental ScienceForest dynamicsSpatial structureApplied Mathematics15. Life on landAgricultural and Biological Sciences (miscellaneous)Tree (graph theory)metsänarviointiData setEnvironmental sciencekaukokartoitusStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesPoint process modelsCartographyordered sequence

description

AbstractThe spatial structure of a forest stand is typically modeled by spatial point process models. Motivated by aerial forest inventories and forest dynamics in general, we propose a sequential spatial approach for modeling forest data. Such an approach is better justified than a static point process model in describing the long-term dependence among the spatial location of trees in a forest and the locations of detected trees in aerial forest inventories. Tree size can be used as a surrogate for the unknown tree age when determining the order in which trees have emerged or are observed on an aerial image. Sequential spatial point processes differ from spatial point processes in that the realizations are ordered sequences of spatial locations, thus allowing us to approximate the spatial dynamics of the phenomena under study. This feature is useful in interpreting the long-term dependence and spatial history of the locations of trees. For the application, we use a forest data set collected from the Kiihtelysvaara forest region in Eastern Finland.

http://urn.fi/URN:NBN:fi:jyu-202109174890