6533b826fe1ef96bd1283f4a

RESEARCH PRODUCT

Characterization of rhenium oxide films and their application to liquid crystal cells

R. KalendarevGino MariottoMarco CastriotaNicola ScaramuzzaS. MarinoJuris PuransEnzo CazzanelliG. DasAlexei Kuzmin

subject

structural and vibrational characterizationMaterials sciencePerrhenateInorganic chemistryGeneral Physics and Astronomychemistry.chemical_elementCrystal structureSputter depositionRheniumIndium tin oxidechemistry.chemical_compoundRhenium trioxidechemistryChemical engineeringLiquid crystalRhenium oxide filmsRhenium oxide films; structural and vibrational characterization; electro-optic response.electro-optic responsePerovskite (structure)

description

Rhenium trioxide exhibits high electronic conductivity, while its open cubic crystal structure allows an appreciable hydrogen intercalation, generating disordered solid phases, with protonic conductivity. Rhenium oxide thin films have been obtained by thermal evaporation of ReO3 powders on different substrates, maintained at different temperatures, and also by reactive magnetron sputtering of a Re metallic target. A comparative investigation has been carried out on these films, by using micro-Raman spectroscopy and x-ray diffraction. Two basic types of solid phases appear to grow in the films: a red metallic HxReO3 compound, with distorted perovskite structures, like in the bulk material, and ordered HReO4 crystals based on tetrahedral perrhenate ions. Because of its conduction properties, the electrical and electro-optical behaviors of ReO3 films deposited on standard indium tin oxide/glass substrate have been tested inside asymmetric nematic liquid crystal cells, showing an appreciable capability of rec...

https://doi.org/10.1063/1.3138812