6533b826fe1ef96bd1284747

RESEARCH PRODUCT

Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells.

Ean-jeong SeoAlexander PanossianThomas A. Efferth

subject

0301 basic medicineCurcuminmedicine.drug_classNarcotic AntagonistsPharmaceutical ScienceDown-RegulationPharmacologyNociceptin Receptor03 medical and health sciencesOpioid receptorCell Line TumorDrug DiscoverymedicineHumansBoswelliaReceptorPharmacologyAnalgesicsChemistryPlant ExtractsGene expression profilingAnalgesics OpioidNociceptin receptor030104 developmental biologyMRNA SequencingComplementary and alternative medicineOpioidNeuropathic painReceptors OpioidMolecular MedicineADAMTS5 ProteinSignal transductionNeurogliamedicine.drug

description

Abstract Background: Curcumin (CC) exerts polyvalent pharmacological actions and multi-target effects, including pain relief and anti-nociceptive activity. In combination with Boswellia serrata extract (BS), curcumin shows greater efficacy in knee osteoarthritis management, presumably due to synergistic interaction of the ingredients. Aim: To elucidate the molecular mechanisms underlying the analgesic activity of curcumin and its synergistic interaction with BS. Methods: We performed gene expression profiling by transcriptome-wide mRNA sequencing in human T98G neuroglia cells treated with CC (Curamed), BS, and the combination of CC and BS (CC-BS; Curamin), followed by interactive pathways analysis of the regulated genes. Results: Treatment with CC and with CC-BS selectively downregulated opioid-related nociceptin receptor 1 gene (OPRL1) expression by 5.9-fold and 7.2-fold, respectively. No changes were detected in the other canonical opioid receptor genes: OPRK1, OPRD1, and OPRM1. Nociceptin reportedly increases the sensation of pain in supra-spinal pain transduction pathways. Thus, CC and CC-BS may downregulate OPRL1, consequently inhibiting production of the nociception receptor NOP, leading to pain relief. In neuroglia cells, CC and CC-BS inhibited signaling pathways related to opioids, neuropathic pain, neuroinflammation, osteoarthritis, and rheumatoid diseases. CC and CC-BS also downregulated ADAM metallopeptidase gene ADAMTS5 expression by 11.2-fold and 13.5-fold, respectively. ADAMTS5 encodes a peptidase that plays a crucial role in osteoarthritis development via inhibition of a corresponding signaling pathway. Conclusion: Here, we report for the first time that CC and CC-BS act as nociceptin receptor antagonists, selectively downregulating opioid-related nociceptin receptor 1 gene (OPRL1) expression, which is associated with pain relief. BS alone did not affect OPRL1 expression, but rather appears to potentiate the effects of CC via multiple mechanisms, including synergistic interactions of molecular networks.

10.1016/j.phymed.2018.09.202https://pubmed.ncbi.nlm.nih.gov/30466988