6533b826fe1ef96bd128478b
RESEARCH PRODUCT
Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation
Laurence Dubrezsubject
0301 basic medicineProgrammed cell deathReviewubiquitinationCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinAnimalsHumansE2F1Physical and Theoretical Chemistry[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QH301-705.5Molecular BiologyTranscription factorSpectroscopybiologyCell growthOrganic ChemistryE2F1 Transcription FactorGeneral MedicineCell cycleComputer Science ApplicationsCell biology030104 developmental biologyE2F1lcsh:Biology (General)lcsh:QD1-999biology.proteinDNA damagecell cycleE2F1 Transcription FactorIntracellulardescription
IF 3.226; International audience; Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly regulated over the course of the cell cycle progression and in response to genotoxic stress. I discuss here the most recent evidence demonstrating the role of ubiquitination in E2F1's regulation.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-01 | International Journal of Molecular Sciences |