0000000000123765

AUTHOR

Laurence Dubrez

0000-0002-7030-2181

showing 14 related works from this author

Towards the elaboration of new gold-based optical theranostics.

2014

Four new red BODIPY–gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.

Boron CompoundsChemistryOptical ImagingNanotechnologyBiological TransportFluorescenceInorganic ChemistryNormal cellMicroscopy FluorescenceCell Line TumorBiophysicsOrganometallic CompoundsHumansBombesinGoldCancer cell linesCytotoxicityDalton transactions (Cambridge, England : 2003)
researchProduct

IAP proteins as targets for drug development in oncology

2013

Laurence Dubrez,1,2 Jean Berthelet,1,2 Valérie Glorian,1,21Institut National de la Santé et de la Recherche Médicale (Inserm), Dijon, France; 2Université de Bourgogne, Dijon, FranceAbstract: The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of various cellular processes, including cell death, immune and inflammatory responses, cell proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor development, such as cell death, cell proliferation, and cell migration; their expressio…

body regionsbiological phenomena cell phenomena and immunityOncoTargets and TherapyOncoTargets and Therapy
researchProduct

Les IAP au cœur de la signalisation NF-κB

2012

The function of IAP has long been limited to an inhibition of apoptosis through their capacity to bind some caspases. Since the expression of these proteins is altered in some tumor samples, IAPs are targets for anticancer therapy and many small molecules have been designed for their capacity to inhibit IAP-caspase interaction. Unexpectedly, these molecules appeared to significantly affect NF-κB activation. In this review, we will discuss the central role of cIAP1, cIAP2 and XIAP in the regulation of NF-κB activating signaling pathways.

Regulation of gene expressionbiologyGeneral MedicineTransforming growth factor betaNFKB1General Biochemistry Genetics and Molecular BiologyCell biologyXIAPbody regionsApoptosisImmunologybiology.proteinSignal transductionReceptorCaspasemédecine/sciences
researchProduct

IAP proteins as targets for drug development in oncology.

2013

The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of various cellular processes, including cell death, immune and inflammatory responses, cell proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor development, such as cell death, cell proliferation, and cell migration; their expression is increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced in response to chemotherapy or …

musculoskeletal diseasesProgrammed cell deathCell growthbusiness.industryCellular differentiationapoptosisCell migrationReviewBioinformaticsbody regionsInternal ribosome entry siteImmune systemOncologyDrug developmentApoptosisCancer researchMedicinePharmacology (medical)Smac mimeticsbiological phenomena cell phenomena and immunitybusinessantitumor therapyOncoTargets and therapy
researchProduct

Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation

2017

IF 3.226; International audience; Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly…

0301 basic medicineProgrammed cell deathReviewubiquitinationCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinAnimalsHumansE2F1Physical and Theoretical Chemistry[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QH301-705.5Molecular BiologyTranscription factorSpectroscopybiologyCell growthOrganic ChemistryE2F1 Transcription FactorGeneral MedicineCell cycleComputer Science ApplicationsCell biology030104 developmental biologyE2F1lcsh:Biology (General)lcsh:QD1-999biology.proteinDNA damagecell cycleE2F1 Transcription FactorIntracellularInternational Journal of Molecular Sciences
researchProduct

IAPs and cell migration.

2015

Inhibitors of apoptosis (IAPs) constitute a family of cell signaling regulators controlling several fundamental biological processes such as innate immunity, inflammation, cell death, cell proliferation, and cell differentiation. Increasing evidence from in vivo and in vitro studies indicate a function for IAPs in the modulation of invasive and migratory properties of cells. Here, we present and discuss the mechanisms whereby IAPs can control cell migration.

MAPK/ERK pathwayCell signalingProgrammed cell deathInnate immune systemCell growthCellular differentiationCell migrationCell BiologyBiologyCell biologyInhibitor of Apoptosis Proteinsbody regionsApoptosisCell MovementCancer researchCell AdhesionAnimalsHumansCytoskeletonDevelopmental BiologySignal TransductionSeminars in celldevelopmental biology
researchProduct

Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs).

2013

Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform format…

musculoskeletal diseasesvirusesReviewIAP antagonistsXIAPLigase activityDIAP1lcsh:QH301-705.5CaspaseInhibitor of apoptosis domainbiologyCell growthapoptosisapoptosomeGeneral MedicineCell biologyXIAPbody regionslcsh:Biology (General)caspasesApoptosisRIPcIAPsbiology.proteinKeywordsDIAP1Baculoviral IAP repeat-containing protein 3Apoptosomebiological phenomena cell phenomena and immunityCells
researchProduct

Endoplasmic Reticulum Chaperones in Viral Infection: Therapeutic Perspectives

2021

SUMMARY Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role …

GRP78CalnexinReviewGRP94Endoplasmic ReticulumMicrobiologyDNAJcalreticulinImmune systemCalnexinHumansProtein disulfide-isomeraseMolecular BiologyEndoplasmic Reticulum Chaperone BiPchemistry.chemical_classificationbiologyEndoplasmic reticulumIntracellular parasiteprotein disulfide isomeraseCell biologyER chaperoneInfectious DiseaseschemistryApoptosisVirus Diseasesbiology.proteinviral infectionGlycoproteinCalreticulinMolecular ChaperonesMicrobiology and Molecular Biology Reviews : MMBR
researchProduct

IAP et Rho : enfin connectées

2014

231 m/s n° 3, vol. 30, mars 2014 DOI : 10.1051/medsci/20143003003 5. Apcher S, Millot G, Daskalogianni C, et al. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci USA 2013 ; 110 : 17951-6. 6. de Turris V, Nicholson P, Orozco RZ, et al. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 2011 ; 17 : 2094-107. 7. Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation within nuclei of mammalian cells. Science 2001 ; 293 : 1139-42. 8. David A, Dolan BP, Hickman HD, et al. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J Cell Biol 201…

Transcription (biology)MHC class Ibiology.proteinIntronRNAHuman melanomaGeneral MedicinePremature Termination CodonBiologyGeneMolecular biologyAntigenic peptideGeneral Biochemistry Genetics and Molecular Biologymédecine/sciences
researchProduct

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct

Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Can Regulate E2F1 Transcription Factor-mediated Control of Cyclin Transcription

2011

International audience; The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-B signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprec…

Transcription GeneticCellular differentiation[SDV]Life Sciences [q-bio]Cyclin ACyclin A[SDV.BC]Life Sciences [q-bio]/Cellular BiologyResponse ElementsInhibitor of apoptosisBiochemistryInhibitor of Apoptosis ProteinsMice03 medical and health sciences0302 clinical medicineCyclin EAnimalsHumansE2F1Gene SilencingE2F[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologyCell Proliferation030304 developmental biologyCell Nucleus0303 health sciencesbiologyE2F1 Transcription FactorCell BiologyCell cycleMolecular biologyProtein Structure Tertiary3. Good healthCell biology[SDV] Life Sciences [q-bio]030220 oncology & carcinogenesisbiology.proteinbiological phenomena cell phenomena and immunityChromatin immunoprecipitationE2F1 Transcription FactorHeLa Cells
researchProduct

IAPs and Resistance to Death Receptors in Cancer

2017

Since their identification in mammal cells, IAPs emerged have as potent regulators of death receptor signalling pathways, determining the cell fate in response to receptor stimulation. Among IAPs, cIAP1 and cIAP2 are active components of receptor-associated signalling complexes able to promote the activation of ubiquitin-dependent survival signalling pathways. For its part, XIAP is an important regulator of caspase activity, determining the apoptotic signalling pathway engaged after death receptor stimulation. The use of IAP antagonists is a promising strategy in order to overcome the resistance of tumor cells to death receptor stimulation.

RIPK1chemistry.chemical_compoundSignallingchemistryApoptosisNecroptosisRegulatorCancer researchNF-κBBiologyCell fate determinationXIAP
researchProduct

cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation

2013

International audience; umour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the cellular and environmental context. TNF receptor engagement induces the formation of a multimolecular complex including the TNFR-associated factor TRAF2, the receptor-interaction protein kinase RIP1 and the cellular inhibitor of apoptosis cIAP1, the latter being essential for NF-κB activation. Here, we show that cIAP1 also regulates TNF-induced actin cytoskeleton reorganization through a cdc42-dependent, NF-κB-independent pathway. Deletion of cIAP1 prevents TNF-induced filopodia and cdc42 activation. The expression of cIAP1 or its E3-ubiquitin ligase-defective mutant restore…

Cancer ResearchLung NeoplasmsBlotting WesternFluorescent Antibody Techniquemacromolecular substancesCDC42BiologyTransfectionInhibitor of Apoptosis ProteinsMice03 medical and health sciences0302 clinical medicineCell AdhesionGeneticsAnimalsHumansImmunoprecipitationNeoplasm InvasivenessPseudopodia[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicscdc42 GTP-Binding ProteinMolecular Biology030304 developmental biology0303 health sciencesTumor Necrosis Factor-alphaActin cytoskeleton reorganizationCell PolarityActin remodelingSurface Plasmon ResonanceActin cytoskeletonCell biologyActin CytoskeletonDisease Models AnimalHEK293 CellsCdc42 GTP-Binding Protein030220 oncology & carcinogenesisNIH 3T3 CellsHeterografts[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPseudopodiaSignal transductionFilopodiaSignal TransductionOncogene
researchProduct

The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress.

2012

Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various “guardian molecules.” These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to…

Programmed cell deathDNA damageCellCellular homeostasisReviewUPRInhibitor of apoptosisDNA damage responseNF-κBneurodegenerative diseaseMedicinecancerNF-kBlcsh:QH301-705.5Caspasebiologybusiness.industryEndoplasmic reticulumapoptosisGeneral MedicineCell biologyIAPsmedicine.anatomical_structurelcsh:Biology (General)caspasesApoptosisImmunologyTNFRbiology.proteinbusinessCells
researchProduct