6533b826fe1ef96bd128486f
RESEARCH PRODUCT
Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics
Sanna MönköläTuomas Airaksinensubject
Algebraic multigrid methodFinite element methodHelmholtz equationPreconditionerSpectral element methodApplied MathematicsSpectral element methodMathematical analysisExact controllabilityComputational acousticsFinite element methodControllabilitysymbols.namesakeComputational MathematicsMultigrid methodHelmholtz free energysymbolsHelmholtz equationPreconditionerLaplace operatorMathematicsdescription
Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz problems as well. Numerical experiments show that the control method takes more CPU time, whereas the shifted-Laplacian method has larger memory requirement. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2010-07-01 | Journal of Computational and Applied Mathematics |