6533b826fe1ef96bd12850b2
RESEARCH PRODUCT
Nonlinear effects in charge stabilized colloidal suspensions
Apratim ChatterjiJürgen HorbachT. Kreersubject
PhysicsCharge densityFOS: Physical sciencesCharge (physics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Soft Condensed MatterCondensed Matter - Disordered Systems and Neural NetworksIonCondensed Matter::Soft Condensed MatterRenormalizationNonlinear systemColloidClassical mechanicsChemical physicsExcluded volumeSoft Condensed Matter (cond-mat.soft)Anisotropydescription
Molecular Dynamics simulations are used to study the effective interactions in charged stabilized colloidal suspensions. For not too high macroion charges and sufficiently large screening, the concept of the potential of mean force is known to work well. In the present work, we focus on highly charged macroions in the limit of low salt concentrations. Within this regime, nonlinear corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)] have to be considered. For non--bulklike systems, such as isolated pairs or triples of macroions, we show, that nonlinear effects can become relevant, which cannot be described by the charge renormalization concept [S. Alexander et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and the primitive model. However, on a quantitative level, neither Debye-H\"uckel theory nor the charge renormalization concept can be confirmed in detail. This seems mainly to be related to the fact, that for small ion concentrations, microionic layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.
year | journal | country | edition | language |
---|---|---|---|---|
2006-01-18 |