6533b826fe1ef96bd12850c4
RESEARCH PRODUCT
Single-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis
Vincenzo CampiscianoFrancesco GiacaloneMichelangelo GruttadauriaValeria La ParolaCarla CalabreseZois SyrgiannisMaurizio PratoMaurizio Pratosubject
Nanotubepalladium nanoparticleMaterials scienceGeneral Physics and AstronomyC-C cross coupling; carbon nanotubes; heterogeneous catalysis; palladium nanoparticles; PAMAM dendrimers; TEM; Materials Science (all); Engineering (all); Physics and Astronomy (all)02 engineering and technologyCarbon nanotubePAMAM dendrimers010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysislaw.inventionPhysics and Astronomy (all)Engineering (all)Suzuki reactionlawDendrimerOrganic chemistrypalladium nanoparticlesGeneral Materials ScienceC-C cross couplingcarbon nanotubePAMAM dendrimercarbon nanotubesGeneral EngineeringSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesTurnover numberheterogeneous catalysisChemical engineeringTEMheterogeneous catalysiMaterials Science (all)0210 nano-technologyHybrid materialdescription
We report the synthesis and catalytic properties of single-walled carbon nanotube-polyamidoamine dendrimers hybrids (SWCNT-PAMAM), prepared via a convergent strategy. The direct reaction of cystamine-based PAMAM dendrimers (generations 2.5 and 3.0) with pristine SWCNTs in refluxing toluene, followed by immobilization and reduction of [PdCl4](2-), led to the formation of highly dispersed small palladium nanoparticles homogeneously confined throughout the nanotube length. One of these functional materials proved to be an efficient catalyst in Suzuki and Heck reactions, able to promote the above processes down to 0.002 mol % showing a turnover number (TON) of 48 000 and a turnover frequency (TOF) of 566 000 h(-1). In addition, the hybrid material could be recovered and recycled for up to 6 times. No leaching of the metal has been detected during the Suzuki coupling. Additional experiments carried out on the spent catalyst permitted to suggest that a "release and catch" mechanism is operative in both reactions, although during Heck reaction small catalytically active soluble Pd species are also present.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 | ACS Nano |