6533b826fe1ef96bd128512f

RESEARCH PRODUCT

Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

Stéphanie Lemaire-ewingAnabelle Sequeira-le GrandValérie DeckertCatherine DesrumauxNicolas OgierNaim Akhtar KhanJean-paul Pais De BarrosAkadiri YessoufouArlette HammannJulien GuyNaig Le GuernLaurent Lagrost

subject

0301 basic medicineLymphocyteIpid Transfer ProteinAdaptive ImmunityCardiovascular-DiseaseT-Lymphocytes RegulatoryLipoprotein MetabolismLeukocyte CountPhospholipid transfer proteinPolarizationImmunology and Allergy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyHypersensitivity DelayedPhospholipid Transfer ProteinsCell PolarityCell DifferentiationT-Lymphocytes Helper-InducerT helper cellFlow CytometryAcquired immune systemCell biologyInfectious Diseasesmedicine.anatomical_structureEndothelial-CellsCytokines[SDV.IMM]Life Sciences [q-bio]/ImmunologyLymphocytemedicine.symptomResearch ArticleDensity-Lipoprotein[SDV.IMM] Life Sciences [q-bio]/ImmunologyHuman Atherosclerotic PlaquesT cellCirculating Interleukin-18ImmunologyT CellAntigen-Presenting CellsInflammationAcute Myocardial-InfarctionGATA3 Transcription FactorBiology03 medical and health sciencesImmune systemmedicineAnimalsAntigen-presenting cellDeficient MiceAlpha-TocopherolMice Inbred C57BL030104 developmental biologyImmunologyVitamin-ET-Box Domain ProteinsBiomarkersSpleen

description

International audience; Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4(+) Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4(+) and CD8(+) T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. Conclusions: For the first time, this work reports a physiological role for PLTP in the polarization of CD4(+) T cells toward the pro-inflammatory Th1 phenotype.

https://hal.archives-ouvertes.fr/hal-01430003