6533b826fe1ef96bd12851f0
RESEARCH PRODUCT
One and Two Dimensional Convolutional Neural Networks for Seizure Detection Using EEG Signals
Tapani RistaniemiFengyu CongXiaoshuang Wangsubject
convolutional neural networks (CNN)Computer scienceseizure detection02 engineering and technologyneuroverkotElectroencephalographyConvolutional neural network0202 electrical engineering electronic engineering information engineeringmedicineEEGContinuous wavelet transformSignal processingArtificial neural networkmedicine.diagnostic_testbusiness.industryelectroencephalogram (EEG)signaalinkäsittelyDeep learningtime-frequency representationtideep learningsignaalianalyysi020206 networking & telecommunicationsPattern recognitionkoneoppiminenBenchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinessepilepsiadescription
Deep learning for the automated detection of epileptic seizures has received much attention during recent years. In this work, one dimensional convolutional neural network (1D-CNN) and two dimensional convolutional neural network (2D-CNN) are simultaneously used on electroencephalogram (EEG) data for seizure detection. Firstly, using sliding windows without overlap on raw EEG to obtain the definite one-dimension time EEG segments (1D-T), and continuous wavelet transform (CWT) for 1D-T signals to obtain the two-dimension time-frequency representations (2D-TF). Then, 1D-CNN and 2D-CNN model architectures are used on 1D-T and 2D-TF signals for automatic classification, respectively. Finally, the classification results from 1D-CNN and 2D-CNN are showed. In the two-classification and three-classification problems of seizure detection, the highest accuracy can reach 99.92% and 99.55%, respectively. It shows that the proposed method for a benchmark clinical dataset can achieve good performance in terms of seizure detection. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-24 |