6533b826fe1ef96bd1285249

RESEARCH PRODUCT

Stochastic order characterization of uniform integrability and tightness

Lasse LeskeläMatti Vihola

subject

Statistics and ProbabilityDiscrete mathematicsPure mathematicsRandom fieldMultivariate random variableProbability (math.PR)ta111Random functionRandom element60E15 60B10 60F25Stochastic orderingFunctional Analysis (math.FA)Mathematics - Functional AnalysisRandom variateConvergence of random variablesStochastic simulationFOS: MathematicsStatistics Probability and UncertaintyMathematics - ProbabilityMathematics

description

We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. Especially, we show that whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p>1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.

https://doi.org/10.1016/j.spl.2012.09.023