6533b827fe1ef96bd1285bb9

RESEARCH PRODUCT

Process-independent strong running coupling

Joannis PapavassiliouCédric MezragCraig D. RobertsDaniele BinosiJose Rodríguez-quintero

subject

Chiral perturbation theoryNuclear TheoryFOS: Physical sciences01 natural sciencesEffective nuclear chargeNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesBeta function (physics)Quantum field theoryNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCoupling constantQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologySum rule in quantum mechanicsUltraviolet fixed pointProcess-independentRunning coupling

description

We unify two widely different approaches to understanding the infrared behaviour of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realised via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann--Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann--Low effective charge.

10.1103/physrevd.96.054026