6533b827fe1ef96bd1285bf5

RESEARCH PRODUCT

Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests

Aila SärkkäMikko KuronenMari MyllymäkiMatti Vihola

subject

0106 biological sciencesStatistics and ProbabilityFOS: Computer and information sciences62F15 (Primary) 62M30 60G55 (Secondary)MCMCGaussianBayesian inferenceMarkovin ketjutStatistics - Applications010603 evolutionary biology01 natural sciencesCox processMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakeregeneraatio (biologia)Applied mathematicsApplications (stat.AP)0101 mathematicsLaplace approximationStatistics - MethodologyGeneral Environmental ScienceParametric statisticsMathematicsspatial random effectsbayesilainen menetelmäMarkov chain Monte CarloFunction (mathematics)15. Life on landMissing dataMonte Carlo -menetelmätcompetition kernelLaplace's methodKernel (statistics)symbolstree regenerationpuustometsänhoitomatemaattiset mallitStatistics Probability and Uncertainty

description

We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points x affects another set of points y but not vice versa. We use the model to investigate the effect of large trees to the locations of seedlings. In the model, every point in x has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The parameters of the model are estimated in a Bayesian framework using Markov chain Monte Carlo (MCMC) where a Laplace approximation is used for the Gaussian field of the LGCP model. The proposed model is used to analyze the effect of large trees on the success of regeneration in uneven-aged forest stands in Finland.

https://dx.doi.org/10.48550/arxiv.2005.01962