6533b827fe1ef96bd1285c1b

RESEARCH PRODUCT

Rare events and scaling properties in field-induced anomalous dynamics

Angelo VulpianiAlessandro VezzaniAlessandro SarracinoRaffaella BurioniGiacomo Gradenigo

subject

Statistics and ProbabilityField (physics)GaussianFOS: Physical sciencesQuantitative Biology::Cell Behaviorsymbols.namesaketransport processes/heat transfer (theory). diffusionRare eventsstochastic particle dynamics (theory)Statistical physicsDiffusion (business)ScalingPhysicsdiffusiondriven diffusive systems (theory)Statistical and Nonlinear PhysicsDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksRandom walkDistribution (mathematics)Lévy flighttransport processes/heat transfer (theory)symbolsdiffusion; stochastic particle dynamics (theory); driven diffusive systems (theory); transport processes/heat transfer (theory)Statistics Probability and UncertaintyStatistical and Nonlinear Physic

description

We show that, in a broad class of continuous time random walks (CTRW), a small external field can turn diffusion from standard into anomalous. We illustrate our findings in a CTRW with trapping, a prototype of subdiffusion in disordered and glassy materials, and in the L\'evy walk process, which describes superdiffusion within inhomogeneous media. For both models, in the presence of an external field, rare events induce a singular behavior in the originally Gaussian displacements distribution, giving rise to power-law tails. Remarkably, in the subdiffusive CTRW, the combined effect of highly fluctuating waiting times and of a drift yields a non-Gaussian distribution characterized by long spatial tails and strong anomalous superdiffusion.

https://doi.org/10.1088/1742-5468/2013/09/p09022