6533b827fe1ef96bd1285c37

RESEARCH PRODUCT

Implications of quantum automata for contextuality

Jibran RashidAbuzer Yakaryilmaz

subject

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory

description

We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error $ o(\log \log n) $-space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem solvable by a Las Vegas realtime QFA, but not by any bounded-error realtime PFA. The same problem can be solvable by an exact two-way QFA in linear expected time but not by any exact two-way PFA. - There is a family of promise problems such that each promise problem can be solvable by a two-state exact realtime QFAs, but, there is no such bound on the number of states of realtime bounded-error PFAs solving the members this family. Our results imply that there exist zero-error quantum computational devices with a \emph{single qubit} of memory that cannot be simulated by any finite memory classical computational model. This provides a computational perspective on results regarding ontological theories of quantum mechanics \cite{Hardy04}, \cite{Montina08}. As a consequence we find that classical automata based simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently powerful to simulate quantum contextuality. We conclude by highlighting the interplay between results from automata models and their application to developing a general framework for quantum contextuality.

http://arxiv.org/abs/1404.2761