6533b827fe1ef96bd128674b

RESEARCH PRODUCT

Multiple solutions for parametric double phase Dirichlet problems

Francesca VetroCalogero VetroNikolaos S. Papageorgiou

subject

Dirichlet problemlocal minimizersTruncationApplied MathematicsGeneral MathematicsMusielak-Orlicz-Sobolev spacesDirichlet distributionsymbols.namesakeDouble phaseSettore MAT/05 - Analisi MatematicaDouble phase integrandsymbolseigenvalues of the q-LaplacianApplied mathematicsSettore MAT/03 - Geometriaunbalanced growthParametric statisticsMathematics

description

We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values [Formula: see text] the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter [Formula: see text] precisely in terms of the spectrum of the [Formula: see text]-Laplacian.

10.1142/s0219199720500066http://hdl.handle.net/10447/525558