6533b827fe1ef96bd128674b
RESEARCH PRODUCT
Multiple solutions for parametric double phase Dirichlet problems
Francesca VetroCalogero VetroNikolaos S. Papageorgiousubject
Dirichlet problemlocal minimizersTruncationApplied MathematicsGeneral MathematicsMusielak-Orlicz-Sobolev spacesDirichlet distributionsymbols.namesakeDouble phaseSettore MAT/05 - Analisi MatematicaDouble phase integrandsymbolseigenvalues of the q-LaplacianApplied mathematicsSettore MAT/03 - Geometriaunbalanced growthParametric statisticsMathematicsdescription
We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values [Formula: see text] the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter [Formula: see text] precisely in terms of the spectrum of the [Formula: see text]-Laplacian.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-21 |