6533b827fe1ef96bd1286e09
RESEARCH PRODUCT
Measurement of the doubly Cabibbo-suppressed decay $D^+\to K^+��^+��^-��^0$ with semileptonic tags
Besiii CollaborationM. AblikimM. N. AchasovP. AdlarsonS. AhmedM. AlbrechtR. AlibertiA. AmorosoM. R. AnQ. AnX. H. BaiY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiJ. BlomsA. BortoneI. BoykoR. A. BriereH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangW. L. ChangG. ChelkovD. Y. ChenG. ChenH. S. ChenM. L. ChenS. J. ChenX. R. ChenY. B. ChenZ. J ChenW. S. ChengG. CibinettoF. CossioX. F. CuiH. L. DaiX. C. DaiA. DbeyssiR. E. De BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De~moriY. DingC. DongJ. DongL. Y. DongM. Y. DongX. DongS. X. DuY. L. FanJ. FangS. S. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengM. FritschC. D. FuY. GaoY. GaoY. GaoY. G. GaoI. GarziaP. T. GeC. GengE. M. GersabeckA GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoL. M. GuM. H. GuY. T. GuC. Y GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. L. HeF. H. HeinsiusC. H. HeinzT. HeldY. K. HengC. HeroldM. HimmelreichT. HoltmannG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangL. Q. HuangX. T. HuangY. P. HuangZ. HuangT. HussainN H��skenW. Ikegami AnderssonW. ImoehlM. IrshadS. JaegerS. JanchivQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiH. B. JiangX. S. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonN. Kalantar-nayestanakiX. S. KangR. KappertM. KavatsyukB. C. KeI. K. KeshkA. KhoukazP. KieseR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuemmelM. KuessnerA. KupscM. G. KurthW. K��hnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. LiH. B. LiH. J. LiJ. L. LiJ. Q. LiJ. S. LiKe LiL. K. LiLei LiP. R. LiS. Y. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiZ. Y. LiH. LiangH. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyC. X. LinB. J. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuL. LiuM. H. LiuP. L. LiuQ. LiuQ. LiuS. B. LiuShuai LiuT. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. D. LuJ. G. LuX. L. LuY. LuY. P. LuC. L. LuoM. X. LuoP. W. LuoT. LuoX. L. LuoX. R. LyuF. C. MaH. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. X. MaX. Y. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeQ. A. MalikA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriT. J. MinR. E. MitchellX. H. MoN. Yu. MuchnoiH. MuramatsuS. NakhoulY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakA. PathakP. PatteriM. PelizaeusH. P. PengK. PetersJ. PetterssonJ. L. PingR. G. PingR. PolingV. PrasadH. QiH. R. QiK. H. QiM. QiT. Y. QiS. QianW. B. QianZ. QianC. F. QiaoL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuK. H. RashidK. RavindranC. F. RedmerA. RivettiV. RodinM. RoloG. RongCh. RosnerM. RumpH. S. SangA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioD. C. ShanW. ShanX. Y. ShanJ. F. ShangguanM. ShaoC. P. ShenH. F. ShenP. X. ShenX. Y. ShenH. C. ShiR. S. ShiX. ShiX. D ShiJ. J. SongW. M. SongY. X. SongS. SosioS. SpataroK. X. SuP. P. SuF. F. SuiG. X. SunH. K. SunJ. F. SunL. SunS. S. SunT. SunW. Y. SunW. Y. SunX SunY. J. SunY. K. SunY. Z. SunZ. T. SunY. H. TanY. X. TanC. J. TangG. Y. TangJ. TangJ. X. TengV. ThorenW. H. TianY. T. TianI. UmanB. WangC. W. WangD. Y. WangH. J. WangH. P. WangK. WangL. L. WangM. WangM. Z. WangMeng WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. L. WangY. WangY. WangY. D. WangY. F. WangY. Q. WangY. Y. WangZ. WangZ. Y. WangZiyi WangZongyuan WangD. H. WeiF. WeidnerS. P. WenD. J. WhiteU. WiednerG. WilkinsonM. WolkeL. WollenbergJ. F. WuL. H. WuL. J. WuX. WuZ. WuL. XiaH. XiaoS. Y. XiaoZ. J. XiaoX. H. XieY. G. XieY. H. XieT. Y. XingG. F. XuQ. J. XuW. XuX. P. XuY. C. XuF. YanL. YanW. B. YanW. C. YanXu YanH. J. YangH. X. YangL. YangS. L. YangY. X. YangYifan YangZhi YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuJ. S. YuT. YuC. Z. YuanL. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarX. Zeng ZengY. ZengA. Q. ZhangB. X. ZhangGuangyi ZhangH. ZhangH. H. ZhangH. H. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangS. ZhangS. F. ZhangShulei ZhangX. D. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoQ. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. H. ZhengB. ZhongC. ZhongL. P. ZhouQ. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouA. N. ZhuJ. ZhuK. ZhuK. J. ZhuS. H. ZhuT. J. ZhuW. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuB. S. ZouJ. H. Zousubject
High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesdescription
Using an $e^+e^-$ annihilation data sample corresponding to an integrated luminosity of $2.93\,\rm fb^{-1}$ collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the doubly Cabibbo-suppressed decay $D^+\to K^+��^+��^-��^0$ is studied with a semileptonic tag method. After removing the decays containing narrow intermediate resonances, $D^+\to K^+��$, $D^+\to K^+��$, and $D^+\to K^+��$, the branching fraction for the decay $D^+\to K^+��^+��^-��^0$ is determined to be $(1.03 \pm 0.12_{\rm stat} \pm 0.06_{\rm syst})\times 10^{-3}$. The ratio of the branching fraction for $D^+\to K^+��^+��^-��^0$ to its Cabibbo-favored counterpart $D^+\to K^-��^+��^+��^0$ is measured to be $ (1.65\pm0.21)\%$, corresponding to $(5.73\pm0.73)\tan^4��_C$, where $��_C$ is the Cabibbo mixing angle. These results are consistent with our previous measurement with hadronic tags but are significantly larger than other doubly Cabibbo-suppressed decays in the charm sector.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |