6533b827fe1ef96bd1287064

RESEARCH PRODUCT

Exome-wide somatic mutation characterization of small bowel adenocarcinoma

Jiri HambergKimmo PalinEsa PitkänenRiku KatainenNetta MäkinenRoosa-maria PlakettiMinna TaipaleRiku LaineUlrika A. HänninenLauri A. AaltonenLinda M. ForsströmJukka-pekka MecklinNiko VälimäkiAri RistimäkiTomas TanskanenEero Pukkala

subject

0301 basic medicineMaleCancer ResearchMICROSATELLITE INSTABILITYColorectal canceroncogenesReceptor ErbB-2medicine.disease_causeCOLORECTAL-CANCERACTIVATIONCohort Studies0302 clinical medicineAnimal CellsAdenocarcinomasMedicine and Health SciencesExomeFrameshift MutationExomeGenetics (clinical)Exome sequencingAged 80 and overSMALL-INTESTINEeducation.field_of_study1184 Genetics developmental biology physiologyCELIAC-DISEASENonsense MutationMiddle Aged3. Good healthsyöpägeenitOncology030220 oncology & carcinogenesissyöpätauditFemaleSIGNALING PATHWAYKRASCellular TypesResearch ArticleAdultProto-Oncogene Proteins B-raflcsh:QH426-470SEQUENCING DATAImmune CellsNonsense mutationPopulationImmunologyAntigen-Presenting CellsComputational biologysuolistosyövätBiologyAdenocarcinomata3111CarcinomasFrameshift mutation03 medical and health sciencesGermline mutationQUALITY-CONTROLGenetiikka kehitysbiologia fysiologia - Genetics developmental biology physiologySyöpätaudit - CancersIntestinal NeoplasmsmedicineGeneticsPoint MutationHumanseducationMolecular BiologyEcology Evolution Behavior and SystematicsAgedColorectal CancerBiology and Life SciencesCancers and Neoplasmscancerous diseasesCell Biologymedicine.diseaseta3122mutationsCOMPREHENSIVE MOLECULAR CHARACTERIZATIONlcsh:Genetics030104 developmental biologyMutationSomatic Mutationbowel cancer3111 BiomedicinemutaatiotHIGH-RESOLUTION

description

Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003–2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (AI) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.

10.1371/journal.pgen.1007200http://europepmc.org/articles/PMC5871010