6533b827fe1ef96bd128721e

RESEARCH PRODUCT

The charm-quark contribution to light-by-light scattering in the muon (−2) from lattice QCD

En-hung ChaoRenwick J. HudspithAntoine GérardinJeremy R. GreenHarvey B. Meyer

subject

magnetic momentPhysics and Astronomy (miscellaneous)530 PhysicsHigh Energy Physics::LatticeNuclear TheoryK: massFOS: Physical sciencesmesonquarkHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeSU(3)muonNuclear ExperimentEngineering (miscellaneous)lattice[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyphoton photon: scatteringlattice field theory530 Physikcharm: massHigh Energy Physics - Phenomenologycorrelation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment

description

We compute the hadronic light-by-light scattering contribution to the muon $g-2$ from the charm quark using lattice QCD. The calculation is performed on ensembles generated with dynamical $(u,d,s)$ quarks at the SU(3)$_{\rm f}$ symmetric point with degenerate pion and kaon masses of around 415 MeV. It includes the connected charm contribution, as well as the leading disconnected Wick contraction, involving the correlation between a charm and a light-quark loop. Cutoff effects turn out to be sizeable, which leads us to use lighter-than-physical charm masses, to employ a broad range of lattice spacings reaching down to 0.039 fm and to perform a combined charm-mass and continuum extrapolation. We use the $\eta_c$ meson to define the physical charm-mass point and obtain a final value of $a_\mu^{\rm HLbL,c} = (2.8\pm 0.5) \times 10^{-11}$, whose uncertainty is dominated by the systematics of the extrapolation. Our result is consistent with the estimate based on a simple charm-quark loop, whilst being free of any perturbative scheme dependence on the charm mass. The mixed charm-light disconnected contraction contributes a small negative amount to the final value.

10.1140/epjc/s10052-022-10589-2http://dx.doi.org/10.1140/epjc/s10052-022-10589-2