6533b828fe1ef96bd12877b7

RESEARCH PRODUCT

Degrees of characters in the principal block

J. Miquel Martínez

subject

Set (abstract data type)CombinatoricsFinite groupAlgebra and Number Theory010102 general mathematics0103 physical sciencesSylow theoremsPrincipal (computer security)Block (permutation group theory)010307 mathematical physics0101 mathematics01 natural sciencesMathematics

description

Abstract Let G be a finite group. We prove that if the set of degrees of characters in the principal p-block of G has size at most 2 then G is p-solvable, and G / O p ′ ( G ) has a metabelian normal Sylow p-subgroup. The general question of proving that if an arbitrary p-block has two degrees then their defect groups are metabelian remains open.

https://doi.org/10.1016/j.jalgebra.2021.03.026