6533b828fe1ef96bd1287814

RESEARCH PRODUCT

The ∞-Eigenvalue Problem

Petri JuutinenJuan J. ManfrediPeter Lindqvist

subject

Mechanical EngineeringMathematical analysisMathematics::Analysis of PDEsOmegaCombinatoricsMathematics (miscellaneous)Infinity LaplacianDomain (ring theory)Nabla symbolRayleigh quotientAnalysisEigenvalues and eigenvectorsQuotientMathematics

description

. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.

https://doi.org/10.1007/s002050050157