0000000000287623
AUTHOR
Petri Juutinen
Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian
We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.
A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation
In this paper, we give a new proof for the fact that the distributional weak solutions and the viscosity solutions of the $p$-Laplace equation $-\diver(\abs{Du}^{p-2}Du)=0$ coincide. Our proof is more direct and transparent than the original one by Juutinen, Lindqvist and Manfredi \cite{jlm}, which relied on the full uniqueness machinery of the theory of viscosity solutions. We establish a similar result also for the solutions of the non-homogeneous version of the $p$-Laplace equation.
Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces
MSC (2000) Primary: 31C35; Secondary: 31C45, 30C65 In this paper, we study the relationship between p-harmonic functions and absolutely minimizing Lipschitz extensions in the setting of a metric measure space (X, d, µ). In particular, we show that limits of p-harmonic functions (as p →∞ ) are necessarily the ∞-energy minimizers among the class of all Lipschitz functions with the same boundary data. Our research is motivated by the observation that while the p-harmonic functions in general depend on the underlying measure µ, in many cases their asymptotic limit as p →∞ turns out have a characterization that is independent of the measure. c
A theorem of Radò’s type for the solutions of a quasi-linear equation
Principal eigenvalue of a very badly degenerate operator and applications
Abstract In this paper, we define and investigate the properties of the principal eigenvalue of the singular infinity Laplace operator Δ ∞ u = ( D 2 u D u | D u | ) ⋅ D u | D u | . This operator arises from the optimal Lipschitz extension problem and it plays the same fundamental role in the calculus of variations of L ∞ functionals as the usual Laplacian does in the calculus of variations of L 2 functionals. Our approach to the eigenvalue problem is based on the maximum principle and follows the outline of the celebrated work of Berestycki, Nirenberg and Varadhan [H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operator…
Ai niin, tää oli tää juttu!
The ∞-Eigenvalue Problem
. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.
Removability of a Level Set for Solutions of Quasilinear Equations
In this paper, we study the removability of a level set for the solutions of quasilinear elliptic and parabolic equations of the second order. We show, under rather general assumptions on the coeff...
A tour of the theory of absolutely minimizing functions
A detailed analysis of the class of absolutely minimizing functions in Euclidean spaces and the relationship to the infinity Laplace equation
The boundary Harnack inequality for infinity harmonic functions in Lipschitz domains satisfying the interior ball condition
Abstract In this note, we give a short proof for the boundary Harnack inequality for infinity harmonic functions in a Lipschitz domain satisfying the interior ball condition. Our argument relies on the use of quasiminima and the notion of comparison with cones.
Decay estimates in the supremum norm for the solutions to a nonlinear evolution equation
We study the asymptotic behaviour, as t → ∞, of the solutions to the nonlinear evolution equationwhere ΔpNu = Δu + (p−2) (D2u(Du/∣Du∣)) · (Du/∣Du∣) is the normalized p-Laplace equation and p ≥ 2. We show that if u(x,t) is a viscosity solution to the above equation in a cylinder Ω × (0, ∞) with time-independent lateral boundary values, then it converges to the unique stationary solution h as t → ∞. Moreover, we provide an estimate for the decay rate of maxx∈Ω∣u(x,t) − h(x)∣.
Discontinuous Gradient Constraints and the Infinity Laplacian
Motivated by tug-of-war games and asymptotic analysis of certain variational problems, we consider a gradient constraint problem involving the infinity Laplace operator. We prove that this problem always has a solution that is unique if a certain regularity condition on the constraint is satisfied. If this regularity condition fails, then solutions obtained from game theory and $L^p$-approximation need not coincide.
On the definition of viscosity solutions for parabolic equations
In this short note we suggest a refinement for the definition of viscosity solutions for parabolic equations. The new version of the definition is equivalent to the usual one and it better adapts to the properties of parabolic equations. The basic idea is to determine the admissibility of a test function based on its behavior prior to the given moment of time and ignore what happens at times after that.
Convex functions on Carnot Groups
We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.