6533b828fe1ef96bd128796e
RESEARCH PRODUCT
Anomalous current in diffusive ferromagnetic Josephson junctions
F. S. BergeretF. S. BergeretIlya V. TokatlyIlya V. TokatlyMikhail Silaevsubject
Josephson effectsuprajohtavuusmagneetitPoint reflectionta221FOS: Physical sciences02 engineering and technologysuperconductors01 natural sciencessuprajohteetPi Josephson junctionSuperconductivity (cond-mat.supr-con)MagnetizationQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesBoundary value problem010306 general physicsmagnetsPhysicsSuperconductivityCondensed matter physicsta114ta213Condensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologySymmetry (physics)Ferromagnetism0210 nano-technologydescription
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-31 |