6533b828fe1ef96bd1287a0c
RESEARCH PRODUCT
DeepIndices : Une nouvelle approche des indices de télédétection basée sur l'optimisation et l'approximation de fonctions par DeepLearning. Application aux indices de végétation sur des données non calibrées
Jehan-antoine VayssadeJean-noël PaoliChristelle GeeGawain Jonessubject
TélédétectionAgriculture de précisionIndices spectral[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture[SDV.SA.STA] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyImages multi-spectraleProxidétectionDeep-learningdescription
National audience; L'une des avancées les plus importantes dans le domaine de l'observation de la terre est la découverte des indices spectraux, ils ont notamment prouvé leur efficacité dans la caractérisation des surfaces agricoles, mais ils sont généralement définis de manière empirique. Cette étude basée sur l'intelligence artificielle et le traitement du signal, propose une méthode pour trouver un indice optimal. Et porte sur l'analyse d'images issues d'une caméra multi-spectrale, utilisée dans un contexte agricole pour l'acquisition en champ proche de végétation. À partir de six bandes spectrales, cinq modèles ont été testés et déployés dans un framework d'apprentissage profond. Les performances des indices standards et des indices profonds ont été évaluées avec le score mIoU (moyenne de l'intersection sur l'union), démontrant ici la force des DeepIndices pour séparer la végétation du sol.
year | journal | country | edition | language |
---|---|---|---|---|
2021-07-01 |