6533b828fe1ef96bd1287aa4

RESEARCH PRODUCT

Natural Language Inference in Ordinary and Support Verb Constructions

Ignazio Mauro Mirto

subject

Non-verbal predicates Semantic roles Entailments Paraphrasing.Machine translationComputer scienceVerbNotationcomputer.software_genreLinguisticsPredicate (grammar)Settore L-LIN/01 - Glottologia E LinguisticaNounCognateArgument (linguistics)Computational linguisticscomputer

description

The family of clause types known as 'support (or 'light') verb construction' (SVC) manifests a peculiar syntax-semantics interface if compared with ordinary verb constructions (OVC). If, in e.g. She laughed, the verb licenses an argument and assigns it a semantic role, syntacticians of every stripe nowadays agree that it is the noun laugh, in She gave a laugh, which fulfils the same function. The differences between the two types have been extensively discussed in the linguistics literature (systematic research started in the 1970s), less so in Computational Linguistics. This paper has two objectives. First, it will propose an innovative type of semantic role, which is termed Cognate Semantic Role (CSR) because the verb employed in the notation is etymologically related to the predicate licensing arguments. She laughed and She gave a laugh therefore express the same role >the-one-who-laughs<, assigned by laughed and a laugh respectively. Second, it will introduce a tool capable of extracting CSRs automatically from both OVCs and SVCs; thus a device will be used for detecting the construction type. CSRs offer a number of advantages for the for-malization of entailments and paraphrases and for Machine Translation.

http://hdl.handle.net/10447/432713