6533b828fe1ef96bd1287ada

RESEARCH PRODUCT

Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion

Aylin KleinStefanie RyglewskiJason W WorrellDimitrios KadasNiklas KrickCarsten Duch

subject

0301 basic medicineBK channelSodium ChannelsSK channel03 medical and health sciences0302 clinical medicineAnimalsDrosophila ProteinsLarge-Conductance Calcium-Activated Potassium ChannelsResearch ArticlesMotor NeuronsVoltage-dependent calcium channelbiologyGeneral NeuroscienceSodium channelCalcium channelfungiExcitatory Postsynaptic PotentialsAfterhyperpolarizationDendritic CellsAxonsElectrophysiological PhenomenaElectrophysiologyStretch-activated ion channel030104 developmental biologyDrosophila melanogasternervous systemLarvaSynapsesbiology.proteinCalcium ChannelsNeuroscience030217 neurology & neurosurgeryLocomotion

description

Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combinesin situelectrophysiology with genetic and pharmacological intervention in larvalDrosophila melanogasterof both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons.In situpatch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during crawling-like motor patterns in semi-intact animals. Genetic and acute pharmacological manipulations suggest that prolonged burst durations are caused by dendritically localized Dmca1D channels, which activate upon cholinergic synaptic input and amplify EPSPs, thus indicating a conserved function of dendritic L-type channels fromDrosophilato vertebrates. By contrast, maximum intraburst firing rates require axonal calcium influx through Dmca1D channels, likely to enhance sodium channel de-inactivation via a fast afterhyperpolarization through BK channel activation. Therefore, in unmyelinatedDrosophilamotoneurons different functions of axonal and dendritic L-type like calcium channels likely operate synergistically to maximize firing output during locomotion.SIGNIFICANCE STATEMENTNervous system function depends on the specific excitabilities of different types of neurons. Excitability is largely shaped by different combinations of voltage-dependent ion channels. Despite a high degree of conservation, the huge diversity of ion channel types and their differential localization pose challenges in assigning distinct functions to specific channels across species. We find a conserved role, from fruit flies to mammals, for L-type calcium channels in augmenting motoneuron excitability. As in spinal cord, dendritic L-type channels amplify excitatory synaptic input. In contrast to spinal motoneurons, axonal L-type channels enhance firing rates in unmyelinatedDrosophilamotoraxons. Therefore, enhancing motoneuron excitability by L-type channels seems an old strategy, but localization and interactions with other channels are tuned to species-specific requirements.

10.1523/jneurosci.1064-17.2017https://europepmc.org/articles/PMC8130532/