Search results for "Afterhyperpolarization"
showing 3 items of 3 documents
Discoordinate regulation of different K channels in cultured rat skeletal muscle by nerve growth factor
1999
We investigated the effects of nerve growth factor (NGF) on expression of K+ channels in cultured skeletal muscle. The channels studied were (1) charybdotoxin (ChTx)-sensitive channels by using a polyclonal antibody raised in rabbits against ChTx, (2) Kv1.5 voltage-sensitive channels, and (3) apamin-sensitive (afterhyperpolarization) channels. Crude homogenates were prepared from cultures made from limb muscles of 1-2-day-old rat pups for identification of ChTx-sensitive and Kv1.5 channels by Western blotting techniques. Apamin-sensitive K+ channels were studied by measurement of specific [125I]-apamin binding by whole cell preparations. ChTx-sensitive channels display a fusion-related incr…
Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion
2017
Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combinesin situelectrophysiology with genetic and pharmacological intervention in larvalDrosophila melanogasterof both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons.In situpatch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during craw…
Transient BK outward current enhances motoneurone firing rates duringDrosophilalarval locomotion
2015
Key points We combine in situ electrophysiology with genetic manipulation in Drosophila larvae aiming to investigate the role of fast calcium-activated potassium currents for motoneurone firing patterns during locomotion. We first demonstrate that slowpoke channels underlie fast calcium-activated potassium currents in these motoneurones. By conducting recordings in semi-intact animals that produce crawling-like movements, we show that slowpoke channels are required specifically in motoneurones for maximum firing rates during locomotion. Such enhancement of maximum firing rates occurs because slowpoke channels prevent depolarization block by limiting the amplitude of motoneurone depolarizati…