6533b828fe1ef96bd1288606

RESEARCH PRODUCT

Measure differential inclusions: existence results and minimum problems

Luisa Di PiazzaValeria MarraffaBianca Satco

subject

Statistics and ProbabilityNumerical AnalysisEuclidean spaceApplied MathematicsRegular polygonMeasure (mathematics)Differential inclusionSettore MAT/05 - Analisi MatematicaBounded variationTrajectoryApplied mathematicsGeometry and TopologyMinificationFocus (optics)Measure differential inclusion Bounded variation Pompeiu excess Selection Minimality conditionAnalysisMathematics

description

AbstractWe focus on a very general problem in the theory of dynamic systems, namely that of studying measure differential inclusions with varying measures. The multifunction on the right hand side has compact non-necessarily convex values in a real Euclidean space and satisfies bounded variation hypotheses with respect to the Pompeiu excess (and not to the Hausdorff-Pompeiu distance, as usually in literature). This is possible due to the use of interesting selection principles for excess bounded variation set-valued mappings. Conditions for the minimization of a generic functional with respect to a family of measures generated by equiregulated left-continuous, nondecreasing functions and to associated solutions of the differential inclusion driven by these measures are deduced, under constraints only on the initial point of the trajectory.

10.1007/s11228-020-00559-9http://hdl.handle.net/10447/433312