6533b828fe1ef96bd1288cea
RESEARCH PRODUCT
Measurement of the inclusive branching fraction for ψ(3686)→KS0+anything
M. AblikimM.n. AchasovP. AdlarsonS. AhmedM. AlbrechtR. AlibertiA. AmorosoQ. AnX.h. BaiY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanK. BegzsurenJ.v. BennettN. BergerM. BertaniD. BettoniF. BianchiJ. BiernatJ. BlomsA. BortoneI. BoykoR.a. BriereH. CaiX. CaiA. CalcaterraG.f. CaoN. CaoS.a. CetinJ.f. ChangW.l. ChangG. ChelkovD.y. ChenG. ChenH.s. ChenM.l. ChenS.j. ChenX.r. ChenY.b. ChenZ.j. ChenW.s. ChengG. CibinettoF. CossioX.f. CuiH.l. DaiX.c. DaiA. DbeyssiR.e. De BoerD. DedovichZ.y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL.y. DongM.y. DongS.x. DuJ. FangS.s. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC.q. FengM. FritschC.d. FuY. FuX.l. GaoY. GaoY. GaoY. GaoY.g. GaoI. GarziaE.m. GersabeckA. GilmanK. GoetzenL. GongW.x. GongW. GradlM. GrecoL.m. GuM.h. GuS. GuY.t. GuC.y. GuanA.q. GuoL.b. GuoR.p. GuoY.p. GuoA. GuskovS. HanT.t. HanT.z. HanX.q. HaoF.a. HarrisK.l. HeF.h. HeinsiusC.h. HeinzT. HeldY.k. HengM. HimmelreichT. HoltmannY.r. HouZ.l. HouH.m. HuJ.f. HuT. HuY. HuG.s. HuangL.q. HuangX.t. HuangY.p. HuangZ. HuangT. HussainN. HüskenW. Ikegami AnderssonW. ImoehlM. IrshadS. JaegerS. JanchivQ. JiQ.p. JiX.b. JiX.l. JiH.b. JiangX.s. JiangJ.b. JiaoZ. JiaoS. JinY. JinT. JohanssonN. Kalantar-nayestanakiX.s. KangR. KappertM. KavatsyukB.c. KeI.k. KeshkA. KhoukazP. KieseR. KiuchiR. KliemtL. KochO.b. KolcuB. KopfM. KuemmelM. KuessnerA. KupscM.g. KurthW. KühnJ.j. LaneJ.s. LangeP. LarinA. LavaniaL. LavezziH. LeithoffM. LellmannT. LenzC. LiC.h. LiCheng LiD.m. LiF. LiG. LiH. LiH. LiH.b. LiH.j. LiJ.l. LiJ.q. LiKe LiL.k. LiLei LiP.l. LiP.r. LiS.y. LiW.d. LiW.g. LiX.h. LiX.l. LiZ.y. LiH. LiangH. LiangY.f. LiangY.t. LiangG.r. LiaoL.z. LiaoJ. LibbyC.x. LinB. LiuB.j. LiuC.x. LiuD. LiuD.y. LiuF.h. LiuFang LiuFeng LiuH.b. LiuH.m. LiuHuanhuan LiuHuihui LiuJ.b. LiuJ.y. LiuK. LiuK.y. LiuL. LiuQ. LiuS.b. LiuShuai LiuT. LiuW.m. LiuX. LiuY.b. LiuZ.a. LiuZ.q. LiuX.c. LouF.x. LuH.j. LuJ.d. LuJ.g. LuX.l. LuY. LuY.p. LuC.l. LuoM.x. LuoP.w. LuoT. LuoX.l. LuoS. LussoX.r. LyuF.c. MaH.l. MaL.l. MaM.m. MaQ.m. MaR.q. MaR.t. MaX.n. MaX.x. MaX.y. MaY.m. MaF.e. MaasM. MaggioraS. MaldanerS. MaldeQ.a. MalikA. MangoniY.j. MaoZ.p. MaoS. MarcelloZ.x. MengJ.g. MesschendorpG. MezzadriT.j. MinR.e. MitchellX.h. MoN.yu. MuchnoiH. MuramatsuS. NakhoulY. NefedovF. NerlingI.b. NikolaevZ. NingS. NisarS.l. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakP. PatteriM. PelizaeusH.p. PengK. PetersJ. PetterssonJ.l. PingR.g. PingA. PitkaR. PolingV. PrasadH. QiH.r. QiM. QiT.y. QiT.y. QiS. QianW.b. QianZ. QianC.f. QiaoL.q. QinX.s. QinZ.h. QinJ.f. QiuS.q. QuK.h. RashidK. RavindranC.f. RedmerA. RivettiV. RodinM. RoloG. RongCh. RosnerM. RumpA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioD.c. ShanW. ShanX.y. ShanM. ShaoC.p. ShenP.x. ShenX.y. ShenH.c. ShiR.s. ShiX. ShiX.d. ShiJ.j. SongQ.q. SongW.m. SongY.x. SongS. SosioS. SpataroF.f. SuiG.x. SunJ.f. SunL. SunS.s. SunT. SunW.y. SunX. SunY.j. SunY.k. SunY.z. SunZ.t. SunY.h. TanY.x. TanC.j. TangG.y. TangJ. TangJ.x. TengV. ThorenI. UmanB. WangB.l. WangC.w. WangD.y. WangH.p. WangK. WangL.l. WangM. WangM.z. WangMeng WangW.h. WangW.p. WangX. WangX.f. WangX.l. WangY. WangY. WangY.d. WangY.f. WangY.q. WangZ. WangZ.y. WangZiyi WangZongyuan WangD.h. WeiP. WeidenkaffF. WeidnerS.p. WenD.j. WhiteU. WiednerG. WilkinsonM. WolkeL. WollenbergJ.f. WuL.h. WuL.j. WuX. WuZ. WuL. XiaH. XiaoS.y. XiaoY.j. XiaoZ.j. XiaoX.h. XieY.g. XieY.h. XieT.y. XingX.a. XiongG.f. XuJ.j. XuQ.j. XuW. XuX.p. XuY.c. XuF. YanL. YanL. YanW.b. YanW.c. YanXu YanH.j. YangH.x. YangL. YangR.x. YangS.l. YangY.h. YangY.x. YangYifan YangZhi YangM. YeM.h. YeJ.h. YinZ.y. YouB.x. YuC.x. YuG. YuJ.s. YuT. YuC.z. YuanW. YuanX.q. YuanY. YuanZ.y. YuanC.x. YueA.a. ZafarY. ZengB.x. ZhangGuangyi ZhangH. ZhangH.h. ZhangH.y. ZhangJ.l. ZhangJ.q. ZhangJ.q. ZhangJ.w. ZhangJ.y. ZhangJ.z. ZhangJianyu ZhangJiawei ZhangLei ZhangS. ZhangS.f. ZhangT.j. ZhangX.y. ZhangY. ZhangY.h. ZhangY.t. ZhangYan ZhangYao ZhangYi ZhangZ.y. ZhangG. ZhaoJ. ZhaoJ.y. ZhaoJ.z. ZhaoLei ZhaoLing ZhaoM.g. ZhaoQ. ZhaoS.j. ZhaoY.b. ZhaoY.x. ZhaoZ.g. ZhaoA. ZhemchugovB. ZhengJ.p. ZhengY.h. ZhengB. ZhongC. ZhongL.p. ZhouQ. ZhouX. ZhouX.k. ZhouX.r. ZhouA.n. ZhuJ. ZhuK. ZhuK.j. ZhuS.h. ZhuW.j. ZhuY.c. ZhuZ.a. ZhuB.s. ZouJ.h. Zousubject
PhysicsNuclear and High Energy PhysicsAnnihilation010308 nuclear & particles physicsBranching fractionContinuum (design consultancy)01 natural sciencesMeasure (mathematics)law.inventionNuclear physicslaw0103 physical sciences010306 general physicsColliderBeam energydescription
Abstract Using 5.9 pb−1 of e + e − annihilation data collected at center-of-mass energies from 3.640 to 3.701 GeV with the BESIII detector at the BEPCII Collider, we measure the observed cross sections of e + e − → K S 0 X (where X = anything ). From a fit to these observed cross sections with the sum of continuum and ψ ( 3686 ) and J / ψ Breit-Wigner functions and considering initial state radiation and the BEPCII beam energy spread, we obtain for the first time the product of ψ ( 3686 ) leptonic width and inclusive decay branching fraction Γ ψ ( 3686 ) e e B ( ψ ( 3686 ) → K S 0 X ) = ( 373.8 ± 6.7 ± 20.0 ) eV, and assuming Γ ψ ( 3686 ) e e is ( 2.33 ± 0.04 ) keV from PDG value, we measure B ( ψ ( 3686 ) → K S 0 X ) = ( 16.04 ± 0.29 ± 0.90 ) % , where the first uncertainty is statistical and the second is systematic.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 | Physics Letters B |