6533b828fe1ef96bd1288e3f

RESEARCH PRODUCT

Shock control bump design optimization on natural laminar aerofoil

Luis Felipe GonzalezKarkenahalli SrinivasJacques PeriauxDongseop LeeNing QinEugenio Oñate

subject

AirfoilHybrid OptimisationEngineeringUAVAvions -- AlesDrag Reduction:Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC]Aerofoils--Mathematical modelsTransition pointWave dragAerospace engineeringAerodinàmica -- Mètodes numèricsSuction Sidebusiness.industry:Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics [Àrees temàtiques de la UPC]Laminar flow010303 Optimisation090100 AEROSPACE ENGINEERINGMechanicsBoundary Layer TransitionACTIVE FLOW CONTROL:Aeronàutica i espai::Aerodinàmica [Àrees temàtiques de la UPC]Superfícies de sustentacióLift (force)Boundary layerWave DragDragUASbusinessBaseline DesignTransonic090104 Aircraft Performance and Flight Control Systems

description

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design. Peer Reviewed

https://www.scipedia.com/public/Lee_et_al_2010a