6533b828fe1ef96bd1288ec1

RESEARCH PRODUCT

Graphene nanoribbons subject to gentle bends

Pekka Koskinen

subject

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Condensed matter physicsBent molecular geometryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesNanotechnologyBendingCondensed Matter PhysicsAspect ratio (image)Electronic Optical and Magnetic MaterialsPlanarZigzagMesoscale and Nanoscale Physics (cond-mat.mes-hall)Periodic boundary conditionsAxial symmetryGraphene nanoribbons

description

Since graphene nanoribbons are thin and flimsy, they need support. Support gives firm ground for applications, and adhesion holds ribbons flat, although not necessarily straight: ribbons with high aspect ratio are prone to bend. The effects of bending on ribbons' electronic properties, however, are unknown. Therefore, this article examines the electromechanics of planar and gently bent graphene nanoribbons. Simulations with density-functional tight-binding and revised periodic boundary conditions show that gentle bends in armchair ribbons can cause significant widening or narrowing of energy gaps. Moreover, in zigzag ribbons sizeable energy gaps can be opened due to axial symmetry breaking, even without magnetism. These results infer that, in the electronic measurements of supported ribbons, such bends must be heeded.

https://doi.org/10.1103/physrevb.85.205429