6533b828fe1ef96bd1288fb9

RESEARCH PRODUCT

Organic material dissolved during oxygen-alkali pulping of hot-water-extracted spruce sawdust

Raimo AlénJoni Lehto

subject

Environmental Engineeringlcsh:BiotechnologyBioengineeringengineering.materialRaw materialhot-water extractionLigninchemistry.chemical_compoundlcsh:TP248.13-248.65Ligninhydroxy acidsvolatile acidsBiorefiningHydroxy acidsautohydrolysisWaste Management and DisposalbiologyChemistryPulp (paper)fungifood and beveragesligniiniPicea abiesmustalipeäbiology.organism_classificationPulp and paper industryHot-water extractionHot water extractionVolatile acidsAutohydrolysisvisual_artBiorefiningNorway spruceengineeringvisual_art.visual_art_mediumSawdustbiorefiningBlack liquormetsäkuusiOxygen-alkali pulpingBlack liquoroxygen-alkali pulping

description

Untreated and hot-water-extracted (HWE) Norway spruce (Picea abies) sawdust was cooked using the sulfur-free oxygen-alkali (OA) method under the following conditions: temperature, 170 °C; liquor-to-wood ratio, 5:1 L/kg; and NaOH charge, 19% on the oven-dry sawdust. In comparison with earlier studies conducted with birch sawdust, the spruce cooking yield data, together with the amount of the pulp rejects (78% to 86% for reference pulps from the initial feedstock and 73% to 83% for pulps from the HWE feedstock), revealed that the pretreatment stage prior to spruce OA pulping caused different effects on pulping performance. The analyses of the three main compound groups (i.e., lignin, volatile acids, and hydroxy acids) in black liquor indicated that slightly higher contents (25.5 to 45.9 g/L) of dissolved lignin were detected in black liquors originating from the HWE sawdust than in the black liquors from the reference material (27.2 to 39.6 g/L). In contrast, considerably lower (~20% decrease) volatile acid contents and similar or slightly decreased hydroxy acids contents were detected in the black liquors from the HWE sawdust. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201607153627