6533b828fe1ef96bd1289055

RESEARCH PRODUCT

Spectral Analysis of LMC X-2 with XMM-Newton: Unveiling the Emission Process in the Extragalactic Z-source

T. Di SalvoR. IariaN. R. RobbaG. LavagettoAntonino D'ai

subject

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsLyman-alpha lineAstrophysicsAstrophysicsSpectral lineBoundary layerSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary SciencePosition (vector)ROSATbinaries accretion accretion disks line: identification stars: neutron [X-rays]Black-body radiationEmission spectrumLarge Magellanic CloudX-rays: binaries accretion accretion disks line: identification stars: neutronAstrophysics::Galaxy Astrophysics

description

We present the results of the analysis of an archival observation of LMC X-2 performed with XMM/Newton. The spectra taken by high-precision instruments have never been analyzed before. We find an X-ray position for the source that is inconsistent with the one obtained by ROSAT, but in agreement with the Einstein position and that of the optical counterpart. The correlated spectral and timing behaviour of the source suggests that the source is probably in the normal branch of its X-ray color-color diagram. The spectrum of the source can be fitted with a blackbody with a temperature 1.5 keV plus a disk blackbody at 0.8 keV. Photoelectric absorption from neutral matter has an equivalent hydrogen column of 4 x 10^{20} cm^{-2}. An emission line, which we identify as the O VIII Lyman alpha line, is detected, while no feature due to iron is detected in the spectrum. We argue that the emission of this source can be straightforwardly interpreted as a sum of the emission from a boundary layer between the NS and the disc and a blackbody component coming from the disc itself. Other canonical models that are used to fit Z-sources do not give a satisfactory fit to the data. The detection of the O VIII emission line (and the lack of detection of lines in the iron region) can be due to the fact that the source lies in the Large Magellanic Cloud.

10.1051/0004-6361:20078027http://adsabs.harvard.edu/abs/2008A&A...478..181L