0000000000042514

AUTHOR

T. Di Salvo

Presence of a soft excess between 0.6 keV and 0.9 keV in the energy spectrum of Cir X-1

Abstract We report on the results of a new BeppoSAX (0.12–200 keV) observation of the peculiar X–ray binary source Circinus X–1 (Cir X–1) near the apastron. We produced a color-color diagram and selected seven different zones. We fitted the spectra obtained from each zone using a model consisting of a blackbody component, at a temperature of ∼0.5 keV, and a Comptonized component, with a seed-photon temperature of ∼1 keV, electron temperature of ∼2.7 keV and optical depth of ∼11. A soft excess between 0.6 keV and 0.9 keV is present in four out of the seven extracted spectra. To fit the soft excess we tried several continuum emission models, and we find good results only adding a further blac…

research product

On the maximum efficiency of the propeller mass-ejection mechanism

Aims. We derive simple estimates of the maximum efficiency with which matter can be ejected by the propeller mechanism in disk-fed, rotating magnetic neutron stars. Some binary evolution scenarios envisage that this mechanism is responsible for expelling to infinity the mass inflowing at a low rate from the companion star, therefore limiting the total amount of mass that can be accreted by the neutron star. Methods. We demonstrate that, for typical neutron star parameters, a maximum of ��_{pro} < 5.7 (P_{-3})^{1/3} times more matter than accreted can be expelled through the propeller mechanism at the expenses of the neutron star rotational energy (P_{-3} is the NS spin period in unit of …

research product

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

research product

The Two‐Component X‐Ray Broadband Spectrum of X Persei Observed byBeppoSAX

We report temporal and broadband (0.1-200 keV) spectral analysis of the Be/X-ray binary X Persei observed by the Narrow Field Instruments (NFI) on board the BeppoSAX satellite. The source luminosity is ~1.2 × 1034 ergs s-1 in the energy range 0.1-10 keV and ~2.4 × 1034 ergs s-1 in the range 0.1-200 keV. The source shows pulsations from 0.1 keV up to 80 keV. No variations of the pulse profile with energy are visible. The barycentric pulse period is 837.376 ± 0.026 s, in agreement with the secular spin-down observed since 1978. The 0.1-10 keV energy spectrum can be well fitted by a power law plus high-energy cutoff, in agreement with previous observations, although at higher energies a hard e…

research product

Temporal Analysis of EXO 0531−66 in Outburst

We report a timing analysis of the Be transient X-ray binary EXO 053109-6609.2 in outburst observed with BeppoSAX. The luminosity of the source is ~1.1 × 1037 ergs s-1, similar to that observed in the previous three outbursts. The source shows pulsations from 0.1 up to 60 keV. The pulsed fraction does not seem to decrease with the energy. The pulse profile is double peaked in the whole energy band. The barycentric pulse period is 13.67590 ± 0.00008 s at MJD 50,520.0. The average rate of period change during the ~2 days of BeppoSAX observation is (3.7 ± 0.5) × 10-9 s s-1. Comparison with ROSAT data allowed the determination of a secular spin-down sec ~(3.67 ± 0.05) × 10−11 s s-1, computed ov…

research product

The 0.1–100 keV Spectrum of Centaurus X‐3: Pulse Phase Spectroscopy of the Cyclotron Line and Magnetic Field Structure

We report spectral and temporal analysis of the X-ray pulsar Centaurus X-3 out of eclipse observed by BeppoSAX. The broadband spectrum (0.12-100 keV) is well described by an absorbed power law modified by a high-energy rollover at ~14 keV (e-folding energy ~8 keV) plus an iron emission line at ~6.7 keV. A soft excess below 1 keV is also present. Interpreted as a blackbody (kT 0.1 keV), it corresponds to 58% of the total unabsorbed flux. This component seems to originate from reprocessing of the primary radiation by an opaque shell located at the magnetosphere. An absorption feature at ~30 keV is also present. Interpreted as a cyclotron line, after correction for gravitational redshift, this…

research product

BeppoSAX observation of 4U 1907+09: Detection of a cyclotron line and its second harmonic

Abstract We report the detection of a cyclotron absorption line and its second harmonic in the average spectrum of the high mass X-ray binary 4U1907+09 observed by the BeppoSAX satellite. The broad band spectral capability of BeppoSAX allowed a good determination of the continuum against which the two absorption features are evident at ∼ 19 and ∼ 39 keV. Correcting for the gravitational redshift of a ∼ 1.4 M⊙ neutron star, the inferred surface magnetic field strength is Bsurf = 2.1 × 1012 G.

research product

Spin down of an Accreting Millisecond Pulsar, the case of XTE J1814‐338

We report about a timing analysis performed on the data gathered by RXTE of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst. The first full orbital solution of this binary system is given. Moreover the evolution of the phase of the pulsed emission reveals that the rotating compact object is spinning down at a rate ν˙ = (-6.7 +/- 0.7) × 10-14 Hz/s, while accreting. This behavior is considered as a result of the braking effect due to the interaction between the magnetosphere and the inner parts of the accretion disc, in the case of an accretion rate low enough to allow the expansion of the magnetospheric radius to the corotation limit. In this context we derive an esti…

research product

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …

research product

Spin up and phase fluctuations in the timing of the accreting millisecond pulsar XTE J1807-294

We performed a timing analysis of the 2003 outburst of the accreting X-ray millisecond pulsar XTE J1807-294 observed by RXTE. Using recently refined orbital parameters we report for the first time a precise estimate of the spin frequency and of the spin frequency derivative. The phase delays of the pulse profile show a strong erratic behavior superposed to what appears as a global spin-up trend. The erratic behavior of the pulse phases is strongly related to rapid variations of the light curve, making it very difficult to fit these phase delays with a simple law. As in previous cases, we have therefore analyzed separately the phase delays of the first harmonic and of the second harmonic of …

research product

Discovery of a redshifted X-ray emission line in the symbiotic neutron star binary 4U 1700+24

We present the spectral analysis of an XMM-Newton observation of the X-ray binary 4U 1700+24, performed during an outburst in August 2002. The EPIC-PN spectrum above 1 keV can be modeled by a blackbody plus Comptonization model, as in previous observations. At lower energies, however, we detect a prominent soft excess, which we model with a broad Gaussian centered at ~0.5 keV. In the high resolution RGS spectrum we detect a single emission line, centered at 19.19^{+0.05}_{-0.09} \AA. We discuss two possible interpretations for this line: O VIII at redshift z=0.012^{+0.002}_{-0.004} or Ne IX at redshift z~0.4.

research product

Evidence of a non-conservative mass transfer for XTE J0929-314

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

research product

The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit

We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency …

research product

INTEGRAL and RXTE observations of accreting millisecond pulsar IGR J00291+5934 in outburst

Simultaneous observations of the accretion-powered millisecond pulsar IGR J00291+5934 by International Gamma-Ray Astrophysics Laboratory and Rossi X-ray Timing Explorer during the 2004 December outburst are analysed. The average spectrum is well described by thermal Comptonization with an electron temperature of 50 keV and Thomson optical depth tau_T ~ 1 in a slab geometry. The spectral shape is almost constant during the outburst. We detect a spin-up of the pulsar with nudot=8.4x10E-13 Hz/s. The ISGRI data reveal the pulsation of X-rays at a period of 1.67 milliseconds up to ~150 keV. The pulsed fraction is shown to increase from 6 per cent at 6 keV to 12--20 per cent at 100 keV. This is n…

research product

A new BeppoSAX observation of the Z Source GX 349+2

Abstract We report on the results from two BeppoSAX observations of the Z source GX 349+2 performed in February 2001 and covering the broad energy range 0.12–200 keV. The average spectrum is well described by a soft blackbody (kTBB∼0.5 keV) and a Comptonized component having a seed-photon temperature of kT0∼1 keV, an electron temperature of kTe∼2.7 keV, and optical depth τ∼11. To well fit the energy spectrum three gaussian lines are needed at 1.2 keV, 2.6 keV, and 6.7 keV with corresponding equivalent widths of 13 eV, 10 eV, and 39 eV, probably associated to L-shell emission of Fe XXIV, Lyα S XVI, and Fe XXV, respectively. These lines may be produced at different distances from the neutron …

research product

A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705−44: looking at the inner accretion disc with X-ray spectroscopy

Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; th…

research product

On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-…

research product

Spectral Evolution of Scorpio X‐1 along its Color‐Color Diagram

We analyze a large collection of RXTE archive data of the bright X‐ray source Scorpius X‐1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by selecting energy spectra from its Color‐Color Diagram. We model the spectra with the combination of two absorbed components: a soft thermal component, which can be interpreted as thermal emission from an accretion disk, and a hybrid Comptonization component, which self‐consistently includes the Fe Kα fluorescence line and the Compton reflected continuum. The presence of hard emission in Scorpius X‐1 has been previously reported, however, without a clear relation with the accreti…

research product

The BeppoSAX 0.1 - 18 keV Spectrum of the Bright Atoll Source GX 9+1: an Indication of the Source Distance

We report the results of a long, 350 ks, BeppoSAX observation of the bright atoll source GX 9+1 in the 0.12 - 18 keV energy range. During this observation GX 9+1 showed a large count rate variability in its lightcurve. From its color - color diagram we selected six zones and extracted the source energy spectrum from each zone. We find that the model, composed of a blackbody plus a Comptonized component absorbed by an equivalent hydrogen column of similar to 1.4 x 10(22) cm(-2), fits the spectra in the energy range 1 - 18 keV well; however, below 1 keV a soft excess is present. We find that the spectrum of GX 9+1, in the 0.12 - 18 keV energy range, is well fitted by the model above, if we us…

research product

Timing of accreting millisecond pulsars

We review recent results from the X-ray timing of accreting millisecond pulsars in LMXBs. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also report here the first measure of the orbital period derivative for an accreting millisecond pulsar, derived for SAX J1808.4-3658 over a timespan of more 7 years.

research product

Spectral analysis of the AMXP during its 2018 outburst

The Accreting Millisecond X-ray Pulsar IGR J17591-2342 is a Low Mass X-ray Binary (LMXB) system that went in outburst on 2018 August and it was monitored by the NICER observatory and partially by other facilities. We aim to study how the spectral emission of this source evolved during the outburst by exploiting the whole X-ray data repository of simultaneous observations. The continuum emission of the combined broad-band spectra is on average well described by an absorbed Comptonization component scattering blackbody-distributed photons peaking at (0.8 +/- 0.5) keV by a moderately optically thick corona (tau = 2.3 +/- 0.5) with temperature of (34 +/- 9) keV. A blackbody component with tempe…

research product

Radio-ejection and bump-related orbital period gap of millisecond binary pulsars

The monotonic increase of the radius of low mass stars during their ascent on the red giant branch halts when they suffer a temporary contraction. This occurs when the hydrogen burning shell reaches the discontinuity in hydrogen content left from the maximum increase in the convective extension, at the time of the first dredge up, and produces a well known "bump" in the luminosity function of the red giants of globular clusters. If the giant is the mass losing component in a binary in which mass transfer occurs on the nuclear evolution time scale, this event produces a temporary stop in the mass transfer, which we will name "bump related" detachment. If the accreting companion is a neutron …

research product

Spectral Evolution of Circinus X-1 along Its Orbit

We report on the spectral analysis of Circinus X-1 observed by the ASCA satellite in March 1998 along one orbital period. The luminosity of the source (in the 0.1-100 keV band) ranges from $2.5 \times 10^{38}$ erg s$^{-1}$ at the periastron (orbital phase 0.01) to $1.5 \times 10^{38}$ erg s$^{-1}$ at orbital phase 0.3. From the spectral analysis and the lightcurve we argue that Cir X-1 shows three states along the orbital evolution. The first state is at the orbital phase interval 0.97-0.3: the luminosity becames super-Eddington and a strong flaring activity is present. In this state a shock could form in the inner region of the system due to the super-Eddington accretion rate, producing an…

research product

Spectral Analysis of LMC-X2 with XMM/Newton

We present the results of the analisys of an archival observation of LMC X-2 performed with XMM/Newton. The spectra of this source has never been analyzed with a high precision instrument before. The spectrum of the source can be fitted with a blackbody with a temperature 1.5 keV plus a disk blackbody at 0.8 keV. We argue that the emission of this source can be straightforwardly interpreted as a sum of the emission from a boundary layer between the NS and the disc and a blackbody component coming from the disc itself. The detection of the O VIII emission line (and the lack of detection of lines in the iron region) can be due to the fact that the source lies in the Large Magellanic Cloud.

research product

A broadband spectral analysis of 4U 1702-429 using XMM-Newton and BeppoSAX data

Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, called soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which gives information on the innermost region of the system. Our aim is to investigate the poorly studied broadband spectrum of the low mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the…

research product

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

research product

A Preliminary BeppoSAX Study of the (Bright) Atoll Source GX 9+1

We report the preliminary results of a 350 ks BeppoSAX observation of the bright atoll source GX 9+1. In the field of view of the MECS instrument we discovered a X-ray pulsar, designated SAX J1802.7 - 2017, at an angular distance from GX 9+1 of ∼ 22 ′ . Since the X-ray emission of SAX J1802.7 - 2017 contaminates the energy spectrum above 10 keV we studied the energy spectrum of GX 9+1 in the energy band 0.1 - 10keV. We selected four regions in the color-color diagram and extracted one spectrum from each region. A bump below 1keV is present in the spectra using a model composed by a Comptonized component absorbed by neutral matter having an equivalent hydrogen column of 1.5 x 10 22 cm -2 . T…

research product

The Zoo of emission lines in the spectrum of Cir X-1 observed by XMM-Newton

We present the preliminary analysis of a 10 ks XMM-Newton EPIC/pn observation of Cir X-1 immediately after the zero phase. The continuum emission is modeled using a blackbody component partially absorbed by neutral matter probably located around the binary system. We detect a forest of emission lines associated to highly ionized ions.

research product

The reflection component in NS LMXBs

Thanks to the good spectral resolution and large effective area of the EPIC/PN instrument on board of XMM-Newton, we have at hand a large number of observations of accreting low-mass X-ray binaries, that allow for the fist time a comprehensive view on the characteristics of the reflection component at different accretion regimes and to probe the effects of a magnetosphere on its formation. We focus here on a comparative analysis of the reflection component from a series of spectroscopic studies on selected sources: 4U 1705-44, observed both in the soft and hard state, the pulsating ms pulsars SAX J1808.4-3658 and IGR J17511-3057, and the intermittent pulsar HETE J1900-2455. Although the sou…

research product

The Large Observatory for X-ray Timing (LOFT)

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

research product

Evolution in Recycling Scenario

The recycling model argues the existence of an evolutionary connection between low mass X-ray binaries and radio millisecond pulsars. The main difficulties which this model finds in predict the parameters of the fully recycled millisecond pulsars, as mass and spin period, can be overcome by the onset of the so-called radio-ejection mechanism. This work is to provide observational support to the radio-ejection mechanism by inspecting the orbital and spin parameters of the known population of fully recycled radio pulsars and compare these with the expectation for the occurrence of this mechanism.

research product

Orbital evolution of an accreting millisecond pulsar: witnessing the banquet of a hidden black widow?

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

research product

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

research product

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480−2446 (Terzan 5)

The newly discovered 11-Hz accreting pulsar, IGR J17480−2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

research product

Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow?

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

research product

Search for radio pulsations in four Anomalous X-ray Pulsars and discovery of two new pulsars

We report on observations of four southern Anomalous X-ray Pulsars, (1RXS J170849.0-400910, 1E 1048.1-5937, 1E 1841-045 and AX J1845-0258), obtained at 1.4 GHz using the Parkes radio telescope. Radio pulsations from these sources have been searched (i) by directly folding the time series at a number of trial periods centered on the value of the spin rate obtained from the X-ray observations; (ii) by performing a blind search; (iii) using a code sensitive to single dedispersed pulses, in the aim to detect signals similar to those of the recently discovered Rotating RAdio Transients. No evidence for radio pulsations with an upper limit of ~0.1 mJy for any of the four targets has been found. T…

research product

A relativistically smeared line profile in the spectrum of the bright Z-source GX 340+0

We present preliminary results of a 50 ks long XMM-Newton observation of the bright Z-source GX 340+0. We study the temporal and spectral variability of the source, performing a time resolved analysis. In the energy spectra, a broad asymmetric emission line in the Fe Ka energy band is always present. Its shape is compatible with a relativistically smeared profile arising from reflection on a hot accretion disk extending close to the central accreting neutron star. Despite a significant change in the continuum emission and luminosity, the line profile remains substantially unchanged. The line is produced by recombination of highly ionized iron (Fe XXV), the reflecting disk has an inner radiu…

research product

A Hard Tail in the X‐Ray Broadband Spectrum of Circinus X‐1 at the Periastron: A Peculiar Z Source

We report on the spectral analysis of the peculiar source Cir X-1 observed by the BeppoSAX satellite when the X-ray source was near the periastron. A flare lasting ~6 × 103 s is present at the beginning of the observation. The luminosity during the persistent emission is 1 × 1038 ergs s-1, while during the flare it is 2 × 1038 ergs s-1. We produced broadband (0.1-100 keV) energy spectra during the flare and the persistent emission. At low energies the continuum is well fitted by a model consisting of Comptonization of soft photons, with a temperature of ~0.4 keV, by electrons at a temperature of ~1 keV. After the flare, a power-law component with photon index ~3 is dominant at energies high…

research product

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena

AbstractGrailQuest(Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution (≤ 100 nanoseconds) each with effective area$\sim 100 \text {cm}^{2}$∼100cm2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, …

research product

Timing of the Accreting Millisecond Pulsar XTE J1814-338

We present a precise timing analysis of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst, observed by RXTE. A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period, P_orb=15388.7229(2)s, and of the projected semimajor axis, a sini/c= 390.633(9) lt-ms. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency (nu=314.35610879(1) Hz) and the first estimate of the spin frequency derivative of this source while accreting (nu^dot=(-6.7 +/- 0.7) 1…

research product

Linking Jet Emission, X‐Ray States, and Hard X‐Ray Tails in the Neutron Star X‐Ray Binary GX 17 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $+$ \end{document} 2

We present the results from simultaneous radio (Very Large Array) and X-ray (Rossi-X-ray Timing Explorer) observations of the Z-type neutron star X-ray binary GX~17+2. The aim is to assess the coupling between X-ray and radio properties throughout its three rapidly variable X-ray states and during the time-resolved transitions. These observations allow us, for the first time, to investigate quantitatively the possible relations between the radio emission and the presence of the hard X-ray tails and the X-ray state of the source. The observations show: 1) a coupling between the radio jet emission and the X-ray state of the source, i.e. the position in the X-ray hardness-intensity diagram (HI…

research product

Hard X-ray emission from neutron star X-ray binaries

Abstract In this paper we review our current knowledge of the hard X–ray emission properties of accreting X–ray Binary Pulsars and old accreting neutron stars in Low Mass X–ray Binaries in light of 7 years of BeppoSAX and RXTE observations. The paper is divided in two parts. In the first part we review the more recent findings on the phase-dependent broad band continua and cyclotron resonance scattering features observed in many systems of the X-ray Binary Pulsar class. In the second part we review the hard X-ray emission of LMXRB focussing on the hard X-ray components extending up to energies of a few hundred keV that have been clearly detected in sources of both the atoll and Z classes. T…

research product

A complete X-ray spectral coverage of the 2010 May-June outbursts of Circinus X-1

Circinus X-1 is a neutron-star-accreting X-ray binary in a wide (P$_{\rm orb}$ = 16.6 d), eccentric orbit. After two years of relatively low X-ray luminosity, in May 2010 Circinus X-1 went into outburst, reaching 0.4 Crab flux. This outburst lasted for about two orbital cycles and was followed by another shorter and fainter outburst in June. We focus here on the broadband X-ray spectral evolution of the source as it spans about three order of magnitudes in flux. We attempt to relate luminosity, spectral shape, local absorption, and orbital phase. We use multiple Rossi-XTE/PCA (3.0--25 keV) and Swift/XRT (1.0--9.0 keV) observations and a 20 ks long Chandra/HETGS observation (1.0--9.0 keV), t…

research product

Localisation of gamma-ray bursts from the combined SpIRIT+HERMES-TP/SP nano-satellite constellation

Multi-messenger observations of the transient sky to detect cosmic explosions and counterparts of gravitational wave mergers critically rely on orbiting wide-FoV telescopes to cover the wide range of wavelengths where atmospheric absorption and emission limit the use of ground facilities. Thanks to continuing technological improvements, miniaturised space instruments operating as distributed-aperture constellations are offering new capabilities for the study of high energy transients to complement ageing existing satellites. In this paper we characterise the performance of the upcoming joint SpIRIT + HERMES-TP/SP nano-satellite constellation for the localisation of high-energy transients th…

research product

BeppoSAX observations of EXO 0531-66 in outburst and X persei

Abstract We report temporal and spectral analysis of two Be/X-ray systems observed by the BeppoSAX NFI. EXO 0531-66 was in outburst during the BeppoSAX observation: it is not a well known source because it is not detectable during the low states and the outbursts are unforeseeable and at temporal distances of years. X Persei is a well known source, but the band spectrum, obtained for the first time from the BeppoSAX observation, revealed an unexpected complexity.

research product

The NHXM observatory

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

research product

Testing reflection features in 4U 1705-44 with XMM-Newton, BeppoSAX, and RXTE in the hard and soft states

We use data of the bright atoll source 4U 1705-44 taken with XMM-Newton, BeppoSAX and RXTE both in the hard and in the soft state to perform a self-consistent study of the reflection component in this source. Although the data from these X-ray observatories are not simultaneous, the spectral decomposition is shown to be consistent among the different observations, when the source flux is similar. We therefore select observations performed at similar flux levels in the hard and soft state in order to study the spectral shape in these two states in a broad band (0.1-200 keV) energy range, with good energy resolution, and using self-consistent reflection models. These reflection models provide…

research product

An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} \approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_X\approx10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the begin…

research product

High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545

In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral componen…

research product

A self-consistent approach to the hard and soft states of 4U 1705-44

We analyzed two XMM-Newton observations of the bright atoll source 4U 1705-44, which can be considered a prototype of the class of the persistent NS LMXBs showing both hard and soft states. The first observation was performed when the source was in a hard low flux state, the second during a soft, high-flux state. Both the spectra show broad iron emission lines. We fit the spectra using a two-component model, together with a reflection model specifically suited to the case of a neutron star, where the incident spectrum has a blackbody shape. In the soft state, the reflection model, convolved with a relativistic smearing component, consistently describes the broad features present in the spec…

research product

The optical counterpart of SAX J1808.4-3658 in quiescence: evidence of an active radio pulsar?

Abstract The optical counterpart of the binary millisecond X-ray pulsar SAX J1808.4–3658 during quiescence was detected at V = 21.5 mag by Homer et al. [MNRAS 325 (2001) 1471]. It was proposed that the bulk of the optical emission arises from viscous dissipation in the innermost zones of a remnant disk. The serious difficulty in this scenario lies in the estimate of the irradiating luminosity required to match the observational data, that is a factor 10–50 higher than the observed quiescent X-ray luminosity of this source. To overcome this problem, we propose an alternative scenario, in which the irradiation is due to the release of rotational energy by the fast spinning neutron star, switc…

research product

Spectral analysis of the dipping LMXB system XB 1916-053

Context: XB 1916-053 is a low mass X-ray binary system (LMXB) hosting a neutron star (NS) and showing periodic dips. The spectrum of the persistent emission was modeled with a blackbody component having a temperature between 1.31 and 1.67 keV and with a Comptonization component with an electron temperature of 9.4 keV and a photon index $\Gamma$ between 2.5 and 2.9. The presence of absorption features associated with highly ionized elements suggested the presence of partially ionized plasma in the system. Aims: In this work we performed a study of the spectrum of XB 1916-053, which aims to shed light on the nature of the seed photons that contribute to the Comptonization component. Methods: …

research product

XMM-Newton X-ray spectroscopy of the high mass X-ray binary 4U 1700-37 at low flux

We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase phi ~0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (alpha ~1.4), but with different absorption colum…

research product

Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $\sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $\sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{\odot}$, which assumes a neutron star mass of 1.4 M$_{\odot}$ and a maximum inclination angle of $75^{\…

research product

SWIFT J1756.9-2508: spectral and timing properties of its 2018 outburst

We discuss the spectral and timing properties of the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 observed by XMM-Newton, NICER and NuSTAR during the X-ray outburst occurred in April 2018. The spectral properties of the source are consistent with a hard state dominated at high energies by a non-thermal power-law component with a cut-off at ~70 keV. No evidence of iron emission lines or reflection humps has been found. From the coherent timing analysis of the pulse profiles, we derived an updated set of orbital ephemerides. Combining the parameters measured from the three outbursts shown by the source in the last ~11 years, we investigated the secular evolution of the spin frequency…

research product

Relativistically Smeared Iron Lines in the Spectra of Bright NS LMXB

We present preliminary results of a study on three bright accreting low-mass X-ray binaries hosting a neutron star, based on XMM-Newton observations. These sources (GX 340+0, GX 349+2 and SAX J1808.4-3658) show a broad Fe K alpha iron line in their spectra. This feature can be well described by relativistic line profile in each case; the good spectral resolution of the EPIC/PN and the high statistics spectra allow to put very good constraints on the disk geometry and ionization stage of the reflecting matter.

research product

Study of the reflection spectrum of the LMXB 4U 1702-429

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

research product

DISK REFLECTION SIGNATURES IN THE SPECTRUM OF THE BRIGHT Z-SOURCE GX 340+0

We present the preliminary results of a 50 ks long XMM-Newton observation of the bright Z-source GX 340+0. In this Letter we focus on the study of a broad asymmetric emission line in the Fe K alpha energy band, whose shape is clearly resolved and compatible with a relativistically smeared profile arising from reflection on a hot accretion disk extending close to the central accreting neutron star. By combining temporal and spectral analysis, we are able to follow the evolution of the source along its Horizontal Branch. However, despite a significant change in the continuum emission and luminosity, the line profile does not show any strong correlated variation. This broad line is produced by…

research product

Fe K α and Fe K β line detection in the NuSTAR spectrum of the ultra-bright Z source Scorpius X-1

Context.Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped into two classes called Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X–1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources.Aims.We analysed the firstNuSTARobservation of this source to study its spectral emission, exploiting the high-statistics data collected by this satellite. The colour-colour diagram shows that the source was probably observed during the lower normal and flaring branches of its Z track. We separated the data from the two branches in…

research product

A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440

SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…

research product

ChandraObservation of Cir X‐1 near the Periastron Passage: Evidence for an X‐Ray Jet?

We present the results of a 25 ks long Chandra observation of the peculiar source Cir X-1 near the periastron passage. We report precise X-ray coordinates of the source, which were compatible with the optical and radio counterpart coordinates. We focus on the study of the detected emission features using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. We detect emission lines associated with Mg XII, Si XIII, Si XIV, S XV, S XVI, Ar XVII, Ar XVIII, Ca XIX, Ca XX, Fe XXV, and Fe XXVI, showing an average redshift of 470 km s-1. The most intense emission features can be fitted with two lines; this is more evident for the 6.6 keV emission feature, which shows a …

research product

Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

In this paper, we report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source was characterized by a flaring-like behavior, with typical rise and decay time scales of ~120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi periodic oscillation (QPO) is detected at ~8 mHz in the power spectrum of the source and clearly associated with the flaring-like behavior. This feature has the strongest po…

research product

Improved orbital parameters of accreting millisecond pulsar SAX J1808.4-3658

Abstract We analyze the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000, and 2002 observed with RXTE. With a technique based on epoch folding search we find an unique orbital solution valid over the five years of high temporal resolution data available. We revise the estimate of the orbital period, P orb  = 7249.1569(1) s and of its error, which we decrease by one order of magnitude. We also give the first constraint on the orbital period derivative, - 6.6 × 10 - 12 P ˙ orb + 0.8 × 10 - 12 s s - 1 . We find that in 2002 the pulse profile shape is clearly asymmetric, showing a secondary peak at about 145° from the main pulse, which is different fr…

research product

Preliminary Results on Intermittent Behaviour of Millisecond Pulsar SAX J1808.4-3658

We analyzed RXTE data from the burst of the year 2000 of the X-ray millisecond binary pulsar SAX J 1808.4-3658 with the intent of determining the new orbital parameters.We used the observations of SAX J1808.4-3658 performed by the Rossi X-Ray Timing Explorer (RXTE) when the source was again detected in outburst during the period January-March 2000 (Wijnands et al. 2001). In particular we examined the data from the Proportional Counter Array (РСA) (Jahoda et al. 1996). We first applied barycentric correction to the data using the optical coordinates of the source (Roche et al. 98).

research product

GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 1E-23 for photons in the gamma-ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensit…

research product

Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…

research product

A self-consistent approach to the reflection component in 4U 1705-44

High-resolution spectroscopy has recently revealed in many neutron-star Low-Mass X-ray binaries that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well fitted by a relativistically smeared line profile. We show here spectral fitting results using a newly developed self-consistent reflection model on XMM-Newton data of the LMXB 4U 1705-44 during a period when the source was in a bright soft state. This reflection model adopts a blackbody prescription for the shape of the impinging radiation field, that we physically associate with the boundary layer emission. © 2010 American Institute of Physics.

research product

High Resolution and Broad Band Spectra of Low Mass X-ray Binaries: A Comparison between Black Holes and Neutron Stars

A common question about compact objects in high energy astrophysics is whether it is possible to distinguish black hole from neutron star systems with some other property that is not the mass of the compact object. Up to now a few characteristics have been found which are typical of neutron stars (like quasi periodic oscillations at kHz frequencies or type-I X-ray bursts), but in many respects black hole and neutron star systems show very similar behaviors. We present here a spectral study of low mass X-ray binaries containing neutron stars and show that these systems have spectral characteristics that are very similar to what is found for black hole systems. This implies that it is unlikel…

research product

On obtaining neutron star mass and radius constraints from quiescent low-mass X-ray binaries in the Galactic plane

X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $R\lesssim$14.5 km for EXO 0748-…

research product

Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

Ambrosino, F., et al.

research product

The complex enviroment around Cir X-1

We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X–1 during the phase passage 0.223-0.261, based on the phase zero passage at the periastron, of its orbital period. We focus on the study of detected emission and absorption features using the High Energy Transmission Grating Spectrometer on board of the Chandra satellite. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low countrate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity, when the unabsorbed source luminosity is about three times the value in the hard …

research product

Spectral Analysis of LMC X-2 with XMM-Newton: Unveiling the Emission Process in the Extragalactic Z-source

We present the results of the analysis of an archival observation of LMC X-2 performed with XMM/Newton. The spectra taken by high-precision instruments have never been analyzed before. We find an X-ray position for the source that is inconsistent with the one obtained by ROSAT, but in agreement with the Einstein position and that of the optical counterpart. The correlated spectral and timing behaviour of the source suggests that the source is probably in the normal branch of its X-ray color-color diagram. The spectrum of the source can be fitted with a blackbody with a temperature 1.5 keV plus a disk blackbody at 0.8 keV. Photoelectric absorption from neutral matter has an equivalent hydrog…

research product

BeppoSAX serendipitous discovery of the X-ray pulsar SAX J1802.7-2017

We report on the serendipitous discovery of a new X-ray source, SAX J1802.7-2017, ~22' away from the bright X-ray source GX 9+1, during a BeppoSAX observation of the latter source on 2001 September 16-20. SAX J1802.7-2017 remained undetected in the first 50 ks of observation; the source count rate in the following ~300 ks ranged between 0.04 c/s and 0.28 c/s, corresponding to an averaged 0.1-10 keV flux of 3.6 10^{-11} ergs cm^{-2} s^{-1}. We performed a timing analysis and found that SAX J1802.7-2017 has a pulse period of 139.612 s, a projected semimajor axis of a_x sin i ~ 70 lt-s, an orbital period of ~4.6 days, and a mass function f(M) ~ 17 Msun. The new source is thus an accreting X-ra…

research product

Broadband spectral analysis of MXB 1659−298 in its soft and hard state

The X-ray transient eclipsing source MXB 1659-298 went into outburst in 1999 and 2015. During these two outbursts the source was observed by XMM-Newton, nuSTAR, and Swift/XRT. Using these observations, we studied the broadband spectrum of the source to constrain the continuum components and to verify whether it had a reflection component, as is observed in other X-ray eclipsing transient sources. We combined the available spectra to study the soft and hard state of the source in the 0.45-55 keV energy range. We report a reflection component in the soft and hard state. The direct emission in the soft state can be modeled with a thermal component originating from the inner accretion disk plus…

research product

A relativistically broadened iron line from an Accreting Millisecond Pulsar

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

research product

The broad-band spectrum of Cyg X-2 with INTEGRAL

We study the broad band (3-100 keV) spectrum of Cygnus X-2 with INTEGRAL. We find that the spectrum is well fitted by a Comptonized component with a seed-photons temperature of ~1 keV, an electron temperature of ~3 keV and an optical depth tau ~ 8. Assuming spherical geometry, the radius of the seed-photons emitting region is ~17 km. The source shows no hard X-ray emission; it was detected only at a 3 sigma level above 40 keV. We also analyzed public ISGRI data of Cyg X--2 to investigate the presence of a hard X-ray component. We report the possible presence of hard X-ray emission in one data set.

research product

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar

We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…

research product

High Resolution Spectroscopy of 4U 1728-34 from a Simultaneous Chandra-RXTE Observation

We report on a simultaneous Chandra and RossiXTE observation of the LMXB atoll bursting source 4U 1728-34 performed on 2002 March 3-5. We fitted the 1.2-35 keV continuum spectrum with a blackbody plus a Comptonized component. An overabundance of Si by a factor of ~2 with respect to Solar abundance is required for a satisfactory fit. Large residuals at 6-10 keV can be fitted by a broad (FWHM ~ 1.6 keV) Gaussian emission line, or, alternatively, by absorption edges associated with Fe I and Fe XXV at ~7.1 keV and ~9 keV, respectively. In this interpretation, we find no evidence of a broad, or narrow Fe Kalpha line, between 6 and 7 keV. We tested our alternative modeling of the iron Kalpha regi…

research product

BeppoSAX observation of 4U 1705-44: detection of hard X-ray emission in the soft state

4U 1705-44 is one of the best studied type I X-ray burster and atoll sources. Since it covers a wide range in luminosity (from a few to 50 x 10^{36} erg s^{-1}) and shows clear spectral state transitions, it represents a good laboratory to test the accretion models proposed for atoll sources. We analysed the energy spectrum accumulated with BeppoSAX observations (43.5 ksec) in August 2000 when the source was in a soft spectral state. The continuum of the wide band energy spectrum is well described by the sum of a blackbody (kT_{bb}~0.56 keV) and a Comptonized component (seed-photon temperature kT_W~1 keV, electron temperature kT_e~2.7 keV, and optical depth ~11). A hard tail was detected at…

research product

Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particul…

research product

Timing of the 2008 outburst of SAX J1808.4–3658 with XMM-Newton: a stable orbital-period derivative over ten years

We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which …

research product

The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

arXiv:2012.01346v1

research product

Time domain astronomy with the THESEUS satellite

THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…

research product

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

research product

A Complex Environment around Circinus X-1

We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X-1 during the phase passage 0.223-0.261. We focus on the study of detected emission and absorption features using the HETGS. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low count rate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity. The spectrum of the hard state clearly shows emission lines of highly ionized elements, while, during the flaring state, the spectrum also shows strong resonant absorption lines. The most intense and interesting feature in this …

research product

Disappearance of Hard X-Ray Emission in the Last BeppoSAX Observation of the Z Source GX 349+2

We report on the results from two BeppoSAX observations of the Z source GX 349+2 performed in February 2001 and covering the broad energy range 0.12-200 keV. The light curve obtained from these observations shows a large flaring activity, the count rate varying from ~130 to ~260 counts/s, indicating that the source was in the flaring branch during these observations. The average spectrum is well described by a soft blackbody and a Comptonized component. To well fit the energy spectrum three gaussian lines are needed at 1.2 keV, 2.6 keV, and 6.7 keV with corresponding equivalent widths of 13 eV, 10 eV, and 39 eV, probably associated to L-shell emission of Fe XXIV, Ly-alpha S XVI, and Fe XXV,…

research product

Timing of the accreting millisecond pulsar IGR~J17511--3057

{Timing analysis of Accretion-powered Millisecond Pulsars (AMPs) is a powerful tool to probe the physics of compact objects. The recently discovered \newigrj is the 12 discovered out of the 13 AMPs known. The Rossi XTE satellite provided an extensive coverage of the 25 days-long observation of the source outburst.} {Our goal is to investigate the complex interaction between the neutron star magnetic field and the accretion disk, determining the angular momentum exchange between them. The presence of a millisecond coherent flux modulation allows us to investigate such interaction from the study of pulse arrival times. In order to separate the neutron star proper spin frequency variations fro…

research product

The discovery of the serendipitous X-ray pulsar SAX J1802.7–2017 from a BeppoSAX observation of GX 9+1

Abstract We have discovered a new X-ray source, SAX J1802.7–2017, ∼22′ away from the bright X-ray source GX 9+1, during a BeppoSAX observation of this latter one on 2001 September 16-20. The count rate of SAX J1802.7–2017 is comparable to the background (∼0.04 c/s) during the first 50 ks of the observation, then the count rate shows a large variability increasing up to ∼0.28 c/s. We have performed a temporal analysis finding that SAX J1802.7–2017 has a pulse period of ∼139.61 s, a projected orbital separation a x sin i of 48±5 lt-s and an orbital period of 3.7 +0.4 −0.2 days, allowing to classify the new object as an X-ray pulsar.

research product

New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years

We report on a timing of the eclipse arrival times of the low mass X-ray binary and X-ray pulsar 2A 1822-371 performed using all available observations of the Proportional Counter Array on board the Rossi X-ray Timing Explorer, XMM-Newton pn, and Chandra. These observations span the years from 1996 to 2008. Combining these eclipse arrival time measurements with those already available covering the period from 1977 to 1996, we obtain an orbital solution valid for more than thirty years. The time delays calculated with respect to a constant orbital period model show a clear parabolic trend, implying that the orbital period in this source constantly increases with time at a rate $\dot P_orb = …

research product

Binary evolution of PSR J1713+0747

PSR J1713+0747 is a binary millisecond radio pulsar with a long orbital period (Porb ∼ 68 d) and a very low neutron star mass (M NS = 1.3 ± 0.2 M⊙). We simulate the evolution of this binary system with an accurate numerical code, which keeps into account both the evolution of the primary and of the whole binary system. We show that strong ejection of matter from the system is fundamental to obtain a mass at the end of the evolution that is within 1 - σ from the observed one, but propeller effects are almost negligible in such a system, where the accretion rate is always near to the Eddington limit. We show that there are indeed two mechanisms can account for the amount of mass loss from the…

research product

X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37

We present the first results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton.We have observed the high-mass X-ray binary (HMXB) 4U 1700-37 with XMM-Newton at four orbital phases in February 2001. 4U 1700-37 is powered by the dense stellar wind of the O supergiant HD 153919. Numerous X-ray flares are observed with a typical duration, of the order of half an hour. We focus on three intervals in which the data are not affected by pile up: the eclipse, the eclipse egress and a low-flux part around orbital phase ϕ ~ 0.28.

research product

On the Optical Counterpart of SAX J1808.4-3658 during Quiescence: Evidence for an Active Radio Pulsar?

The optical counterpart of the binary millisecond X-ray pulsar SAX J1808.4-3658 during quiescence was detected at V =21.5 mag, inconsistent with intrinsic emission from the faint companion star. We propose that the optical emission from this system during quiescence is due to the reprocessing by the companion star and a remnant accretion disk of the rotational energy released by the fast spinning neutron star, switched on, as magneto-dipole rotator (radio pulsar), during quiescence. In this scenario the companion behaves as a bolometer, reprocessing in optical the intercepted fraction of the power emitted by the pulsar. This reprocessed fraction depends only on known binary parameters. Thus…

research product

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

research product

XIPE: the x-ray imaging polarimetry explorer

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

research product

GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary

The bursting pulsar, GRO J1744-28, went again in outburst after $\sim$18 years of quiescence in mid-January 2014. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broadband and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and b…

research product

IGR J17503–2636: a candidate supergiant fast X-ray transient

IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed …

research product

A Hard X-Ray View of Scorpius X-1 with INTEGRAL : Nonthermal Emission?

We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of…

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

A ionized reflecting skin above the accretion disk of GX 349+2

The broad emission features in the Fe-Kalpha region of X-ray binary spectra represent an invaluable probe to constrain the geometry and the physics of these systems. Several Low Mass X-ray binary systems (LMXBs) containing a neutron star (NS) show broad emission features between 6 and 7 keV and most of them are nowi nterpreted as reflection features from the inner part of an accretion disk in analogy to those observed in the spectra of X-ray binary systems containing a Black Hole candidate. The NS LMXB GX 349+2 was observed by the XMM-Newton satellite which allows, thanks to its high effective area and good spectral resolution between 6 and 7 keV, a detailed spectroscopic study of the Fe-Ka…

research product

Chandra observation of the Big Dipper X 1624–490

We present the results of a 73 ks long Chandra observation of the dipping source X 1624-490. During the observation a complex dip lasting 4 hours is observed. We analyse the persistent emission detecting, for the first time in the 1st-order spectra of X 1624-490, an absorption line associated to \ion{Ca}{xx}. We confirm the presence of the \ion{Fe}{xxv} K$_\alpha$ and \ion{Fe}{xxvi} K$_\alpha$ absorption lines with a larger accuracy with respect to a previous XMM observation. Assuming that the line widths are due to a bulk motion or a turbulence associated to the coronal activity, we estimate that the lines have been produced in a photoionized absorber between the coronal radius and the out…

research product

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

research product

Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Compton…

research product

A newly discovered accreting pulsar in Terzan 5

The 11 Hz accreting pulsar, IGR J17480-2446, was recently discovered in the globular cluster Terzan 5. The analisys of the Doppler shifts induced by the orbital motion reveals how the neutron star belongs to a ∼ 21.3 hr binary system with a companion star of 0.4-1.5 M. The X-ray pulsar spins up while accreting at an average rate of 1.48(2)×10−12 Hz s−1, in agreement with the accretion of disc matter angular momentum given the observed luminosity. From the presence of pulsations at different accretion rates we constrain the magnetic field to lie within ∼2×108 and ∼2×1010 G. From this estimate, the value of the spin period and of the observed spin-up rate, we associate this source with the st…

research product

Broadband observations of the X-ray burster 4U1705-44 with Beppo SAX

4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evol…

research product

Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different co…

research product

Six Years of ScoX-1 Monitoring with BeppoSAX Wide Field Cameras

We performed a systematic analysis of 54 Wide Field Camera (WFC) observations of ScoX-1 available in the BeppoSAX public archive. Observations span over the six years of BeppoSAX mission lifetime and include 690 hr of data. We searched for shifts and shape changes of the Z pattern in the color-color diagrams. We find that the Z pattern occupies most of the time the same locus in the color-color diagram. There are however a few exceptions, which are discussed in detail.

research product

Discovery of hard phase lags in the pulsed emission of GRO J1744-28

We report on the discovery and energy dependence of hard phase lags in the 2.14 Hz pulsed profiles of GRO J1744-28. We used data from XMM-Newton and NuSTAR. We were able to well constrain the lag spectrum with respect to the softest (0.3--2.3 keV) band: the delay shows increasing lag values reaching a maximum delay of $\sim$ 12 ms, between 6 and 6.4 keV. After this maximum, the value of the hard lag drops to 7 ms, followed by a recovery to a plateau at 9 ms for energies above 8 keV. NuSTAR data confirm this trend up to 30 keV, but the measurements are statistically poorer, and therefore, less constraining. The lag-energy pattern up to the discontinuity is well described by a logarithmic fun…

research product

Chandra Observation of the Dipping Source XB 1254-690

We present the results of a 53 ks long Chandra observation of the dipping source XB 1254--690. During the observation neither bursts or dips were observed. From the zero-order image we estimated the precise X-ray coordinates of the source with a 90% uncertainty of 0.6\arcsec. Since the lightcurve did not show any significant variability, we extracted the spectrum corresponding to the whole observation. We confirmed the presence of the \ion{Fe}{xxvi} K$_\alpha$ absorption lines with a larger accuracy with respect to the previous XMM EPIC pn observation. Assuming that the line width were due to a bulk motion or a turbulence associated to the coronal activity, we estimate that the lines were p…

research product

A BeppoSAX study of the Galactic Z-source GX 340+0

Abstract We present the results of a BeppoSAX broad band (0.1–200 keV) observation of the Z-source GX 340+0. The 1.8–30 keV continuum is well described by a blackbody ( kT BB ∼0.5 keV) plus a Comptonized component with seed photons temperature ∼ 1 keV and electron temperature ∼ 3 keV. A hard tail dominates the spectrum above 30 keV. It can be fitted using a bremsstrahlung component or, equivalently, a powerlaw (with a low-energy cutoff). We detect also a Gaussian line at ∼6.8 keV and an absorption edge at ∼9.2 keV. A low-energy (∼1 keV) unresolved feature needs further investigations.

research product

Indications of non-conservative mass-transfer in AMXPs

Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…

research product

A deep study of the high–energy transient sky

This is an open access article. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds t…

research product

A broad iron line in the Chandra/HETG spectrum of 4U 1705-44

We present preliminary results from a Chandra 30 ks observation of the atoll sourco 4U 1705 44. In particular we concentrate on the study of the iron Kα line, using the HEG spectrometer. The iron Kα line at ~ 6.6 keV is found to be intrinsically broad (FWHM ~ 1.7 keV); its width can be explained by reflection from a cold accretion disk extending down to ~ 17 km from the neutron star center or by Compton broadening in the hotter (~ 3 – 4 keV) corona.

research product

A Hard Tail in the Broad Band Spectrum of the Dipper XB 1254-690

We report on the results of spectral analysis of the dipping source XB 1254-690 observed by the BeppoSAX satellite. We find that the X-ray dips are not present during the BeppoSAX observation, in line with recent RXTE results. The broad band (0.1-100 keV) energy spectrum is well fitted by a three-component model consisting of a multicolor disk blackbody with an inner disk temperature of ~0.85 keV, a comptonized spectrum with an electron temperature of ~2 keV, and a bremsstrahlung at a temperature of ~20 keV. Adopting a distance of 10 kpc and taking into account a spectral hardening factor of ~1.7 (because of electron scattering which modifies the blackbody spectrum emitted by the disk) we e…

research product

SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for si…

research product

Spectral analysis of the low-mass X-ray pulsar 4U 1822-371: Reflection component in a high-inclination system

Context. The X-ray source 4U 1822-371 is an eclipsing low-mass X-ray binary and X-ray pulsar, hosting a NS that shows periodic pulsations in the X-ray band with a period of 0.59 s. The inclination angle of the system is so high (80–85°) that in principle, it should be hard to observe both the direct thermal emission of the central object and the reflection component of the spectrum because they are hidden by the outer edge of the accretion disc. Despite the number of studies carried out on this source, many aspects such as the geometry of the system, its luminosity, and its spectral features are still debated. Aims. Assuming that the source accretes at the Eddington limit, the analysis perf…

research product

Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence

It is commonly believed that millisecond radio pulsars have been spun up by transfer of matter and angular momentum from a low-mass companion during an X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that of the accreting millisecond X-ray pulsars, transient systems that show periods of X-ray quiescence during which radio emission could switch on. The aim of this work is to search for millisecond pulsations from three accreting millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658, observed during their quiescent X-ray phases at high radio frequencies (5 - 8 GHz) in order to overcome the problem of the free-free absorption due to the matter…

research product

Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+0038

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $\sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, o…

research product

Optical pulsations from a transitional millisecond pulsar

Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is still strong enough to channel the accreting matter towards the magnetic poles. When mass transfer is much reduced or ceases altogether, pulsed emission generated by particle acceleration in the magnetosphere and powered by the rotation of the neutron star is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing betwee…

research product

The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an acc…

research product

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

research product

Science case study and scientific simulations for the enhanced X-ray Timing Polarimetry mission, eXTP

The X-ray astronomy mission eXTP (enhanced X-ray Timing Polarimetry) is designed to study matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state (EoS) of matter at supranuclear density, the physics in extremely strong magnetic fields, the study of accretion in strong-field gravity (SFG) regime. Primary targets include isolated and binary neutron stars, strong magneticfield systems like magnetars, and stellar-mass and supermassive black holes. In this paper we report about key observations and simulations with eXTP on the primary objectives involving accretion under SFG regimes and determination of NS-EoS.

research product

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum…

research product

Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years

The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…

research product

LOFT - A large observatory for x-ray timing

The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to…

research product

The near-IR counterpart of IGR J17480-2446 in Terzan 5

Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…

research product

A method to constrain the neutron star magnetic field in Low Mass X-ray Binaries

We describe here a method to put an upper limit to the strength of the magnetic field of neutron stars in low mass X‐ray binaries for which the spin period and the X‐ray luminosity during X‐ray quiescent periods are known. This is obtained using simple considerations about the position of the magnetospheric radius during quiescent periods. We applied this method to the accreting millisecond pulsar SAX J1808.4‐3658, which shows coherent X‐ray pulsations at a frequency of ∼ 400 Hz and a quiescent X‐ray luminosity of ∼ 5 × 1031 ergs/s, and found that B ⩽ 5 × 108 Gauss in this source. Combined with the lower limit inferred from the presence of X‐ray pulsations, this constrains the SAX J1808.4‐3…

research product

The different fates of a low-mass X-ray binary - I. Conservative mass transfer

We study the evolution of a low mass x-ray binary coupling a binary stellar evolution code with a general relativistic code that describes the behavior of the neutron star. We assume the neutron star to be low--magnetized (B~10^8 G). In the systems investigated in this paper, our computations show that during the binary evolution the companion transfers as much as 1 solar mass to the neutron star, with an accretion rate of 10^-9 solar masses/yr. This is sufficient to keep the inner rim of the accretion disc in contact with the neutron star surface, thus preventing the onset of a propeller phase capable of ejecting a significant fraction of the matter transferred by the companion. We find th…

research product

Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler an…

research product

Quantum gravity with THESEUS

AbstractIn this paper we explore the possibility to search for a dispersion law for light propagation in vacuo with a sample of Gamma-Ray Bursts detected by the THESEUS satellite. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that (in a series expansion) depend on a given power of the ratio of the photon energy to the Planck energy. This ratio is as small as 10− 23 for photons in the soft γ −ray band (100 keV). The dominant effect is determined by the first significant term of this expansion. If the first order in this expansion is relevant, these theories imply a Lorentz Invaria…

research product

IGR J17329-2731: The birth of a symbiotic X-ray binary

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

research product

IGR J17451-3022: a dipping and eclipsing low mass X-ray binary

In this paper, we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instruments on-board INTEGRAL and the Swift/XRT showed that the event lasted for about 9 months and that the emission of the source remained soft for the entire period. The source emission is dominated by a thermal component (kT~1.2 keV), most likely produced by an accretion disk. The XMM-Newton observation carried out during the outburst revealed the presence of multiple absorption features in the soft X-ray emission that could be associated to the p…

research product

Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305

We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.

research product

The BeppoSAX 0.1-100 keV Spectrum of the X-Ray Pulsar 4U 1538-52

We report the results of temporal and spectral analysis performed on the X-ray pulsar 4U 1538-52 observed by BeppoSAX. We obtained a new estimate of the spin period of the neutron star P=528.24 \pm 0.01 s (corrected for the orbital motion of the X-ray source): the source is still in the spin-up state, as since 1988. The pulse profile is double peaked, although significant variations of the relative intensity of the peaks with energy are present. The broad band (0.12-100 keV) out-of-eclipse spectrum is well described by an absorbed power law modified by a high energy cutoff at \sim 16 keV (e-folding energy \sim 10 keV) plus an iron emission line at \sim 6.4 keV. A cyclotron line at \sim 21 k…

research product

Resolving the Fe XXV triplet with Chandra in Centaurus X-3

We present the results of a 45 ks Chandra observation of the high-mass X-ray binary Cen X-3 at orbital phases between 0.13 and 0.40 (in the eclipse post-egress phases). Here we concentrate on the study of discrete features in the energy spectrum at energies between 6 and 7 keV, that is, on the iron K alpha line region, using the High Energy Transmission Grating Spectrometer (HETGS) on board the Chandra satellite. We clearly see a K alpha neutral iron line at similar to 6.40 keV and were able to distinguish the three lines of the Fe xxv triplet at 6.61, 6.67, and 6.72 keV, with equivalent widths of 6, 9, and 5 eV, respectively. The equivalent width of the Ka neutral iron line is 13 eV, an or…

research product

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($\sim0.9$ keV) by an electron population with kT$_e\sim30$ keV, and at lower energies by a blackbody component with kT$\sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3��$ confidence leve…

research product

Searching for pulsed emission from XTE J0929-314 at high radio frequencies

The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…

research product

Search for multiwavelength emission from the binary millisecond pulsar PSR J1836-2354A in the globular cluster M22

We present a multi-band search for X-ray, optical and $\gamma$-ray emission of the radio binary millisecond pulsar J1836-2354A, hosted in the globular cluster M22. X-ray emission is significantly detected in two Chandra observations, performed in 2005 and 2014, at a luminosity of $\sim$2-3$\times$10$^{30}$ erg s$^{-1}$, in the 0.5-8 keV energy range. The radio and the X-ray source positions are found consistent within 1$\sigma$ error box. No detection is found in archival XMM-Newton and Swift/XRT observations, compatible with the Chandra flux level. The low statistics prevents us to assess if the X-ray source varied between the two observations. The X-ray spectrum is consistent with a power…

research product

Broad-band Spectral Evolution of Scorpius X-1 along its Color-Color Diagram

We analyze a large collection of RXTE archive data from April 1997 to August 2003 of the bright X-ray source Scorpius X-1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by studying energy spectra from selected regions in the Z-track of its Color-Color Diagram. A two-component model, consisting of a soft thermal component interpreted as thermal emission from an accretion disk and a thermal Comptonization component, is unable to fit the whole 3--200 keV energy spectrum at low accretion rates. Strong residuals in the highest energy band of the spectrum require the addition of a third component that can be fitted with a …

research product

Circinus X-1 observed with BeppoSAX wide field cameras

Abstract We present a sky image and spectra for various orbital phases of Circinus X-1 observed by B-SAX Wide Field Cameras. We suggest that the spectral shape is dependent on the orbital phase.

research product

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

research product

Broadband spectral analysis of MXB 1659-298 in its soft and hard state

The X-ray transient eclipsing source MXB 1659-298 went in outburst in 1999 and 2015, respectively, during which it was observed by XMM-Newton, NuSTAR and Swift. Using these observations we studied the broadband spectrum of the source to constrain the continuum components and to verify the presence of a reflection component. We analysed the soft and hard state of the source, finding that the soft state can be modelled with a thermal component associated with the inner accretion disc plus a Comptonised component. A smeared reflection component and the presence of an ionised absorber are also requested in the best-fit model. On the other hand, the direct continuum emission in the hard state ca…

research product

Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the…

research product

XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km f…

research product

Reflection component in the Bright Atoll Source GX 9+9

GX 9+9 (4U 1728-16) is a low mass X-ray binary (LMXB) source harboring a neutron star. Although it belongs to the subclass of the bright Atoll sources together with GX 9+1, GX 3+1, and GX 13+1, its broadband spectrum is poorly studied and apparently does not show reflection features in the spectrum. To constrain the continuum well and verify whether a relativistic smeared reflection component is present, we analyze the broadband spectrum of GX 9+9 using {\it BeppoSAX} and \textit{XMM-Newton} spectra covering the 0.3-40 keV energy band. We fit the spectrum adopting a model composed of a disk-blackbody plus a Comptonized component whose seed photons have a blackbody spectrum (Eastern Model). …

research product

The spin and orbit of the newly discovered pulsar IGR J17480-2446

We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…

research product

Timing of the accreting millisecond pulsar IGR J17591-2342: evidence of spin-down during accretion

We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu} \sim -7\times 10^{-14}$ Hz s$^{-1}$), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ra…

research product

A model to interpret pulse phase shifts in AMXPs: SAX J1808.4-3658 as a proof of concept

Abstract: Observational evidences of erratic 1(st) harmonic pulse phase shifts in accreting millisecond X-ray pulsars pulse phase evolution was reported by several authors. This effect always go together with much more stable 2(nd) harmonics pulse phase delays. Different possible explanations of these phase shifts have been given in literature. But all these interpretations do not explain why the 2(nd) harmonic are more stable than the 1(st) harmonic. The explanation of such a behaviour is of fundamental importance in order to gain an insight on the NS rotational behaviour and to remove the still present interpretative ambiguity on the results of timing analysis. We propose a simple toy-mod…

research product

Signature of the presence of a third body orbiting around XB 1916-053

The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadra…

research product

Evidence for a resonant cyclotron line in IGR J16493-4348 from the Swift-BAT hard X-ray survey

Resonant absorption cyclotron features are a key diagnostic tool to directly measure the strength of the magnetic field of accreting neutron stars. However, typical values for cyclotron features lie in the high-energy part of the spectrum between 20 keV and 50 keV, where detection is often damped by the low statistics from single pointed observations. We show that long-term monitoring campaign performed with Swift-BAT of persistently, but faint, accreting high-mass X-ray binaries is able to reveal in their spectra the presence of cyclotron features. We extracted the average Swift-BAT 15-150 keV spectrum from the 54 months long Swift-BAT survey of the high-mass X-ray source IGR J16493-4348. …

research product

General relativistic effects on the evolution of binary systems.

When a radio pulsar brakes down due to magnetodipole emission,its gravitational mass decreases accordingly. If the pulsar is hosted in a binary system, this mass loss will Increase the orbital period of the system. We show that this relativistic effect can be indeed observable if the neutron star is fast and magnetized enough and that, if observed, it will help to put tight constraints to the equation of state of ultradense matter. Moreover, in Low Mass X-ray Binaries that evolve towards short periods, the neutron star lights up as a radio pulsar during the "period gap". As the effect we consider contrasts the orbital period decay, the system spends a longer time in this phase. As a consequ…

research product

Testing jet geometries and disc-jet coupling in the neutron star LMXB 4U 0614 + 091 with the internal shocks model

Multi-wavelength spectral energy distributions of Low Mass X-ray Binaries in the hard state are determined by the emission from a jet, for frequencies up to mid-infrared, and emission from the accretion flow in the optical to X-ray range. In the last years, the flat radio-to-mid-IR spectra of Black Hole (BH) X-ray binaries was described using the internal shocks model, which assumes that the fluctuations in the velocity of the ejecta along the jet are driven by the fluctuations in the accretion flow, described by the X-ray Power Density Spectrum (PDS). In this work we attempt to apply this model for the first time to a Neutron Star (NS) LMXB, i.e. 4U 0614+091. We used the multi-wavelength d…

research product

Spin down during quiescence of the fastest known accretion-powered pulsar

We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of ��dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible …

research product

Resolving the Fe xx v Triplet with Chan d r a in Centaurus X-3

We present the results of a 45 ks Chandra observation of the high-mass X-ray binary Cen X-3 at orbital phases between 0.13 and 0.40 (in the eclipse post-egress phases). Here we concentrate on the study of discrete features in the energy spectrum at energies between 6 and 7 keV, that is, on the iron Kα line region, using the High Energy Transmission Grating Spectrometer (HETGS) on board the Chandra satellite. We clearly see a Kα neutral iron line at ~6.40 keV and were able to distinguish the three lines of the Fe XXV triplet at 6.61, 6.67, and 6.72 keV, with equivalent widths of 6, 9, and 5 eV, respectively. The equivalent width of the Kα neutral iron line is 13 eV, an order of magnitude low…

research product

A Preliminary Analysis of a New Chandra Observation (ObsID 6148) of Cir X-1

We present the preliminary spectral analysis of a 25 ks long Chandra observation of the peculiar source Cir X–1 near the periastron passage. We estimate more precise coordinates of the source compatible with the optical and radio counterpart coordinates. We detect emission lines associated to Mg XII, Si XIII, Si XIV, S XV, S XVI Ar XVII, Ar XVIII, Ca XIX, Ca XX, Fe XXV, Fe XXVI showing a redshift of 470 km s−1. The more intense emission features at 6.6 keV show a double‐peaked shape that can be modelled with two or three Gaussian lines.

research product

Study of the Temporal Behavior of 4U 1728−34 as a Function of Its Position in the Color‐Color Diagram

We study the timing properties of the bursting atoll source 4U 1728-34 as a function of its position in the X-ray color-color diagram. In the island part of the color-color diagram (corresponding to the hardest energy spectra), the power spectrum of 4U 1728-34 shows several features such as a band-limited noise component present up to a few tens of Hz, a low-frequency quasi-periodic oscillation (LFQPO) at frequencies between 20 and 40 Hz, a peaked noise component around 100 Hz, and one or two QPOs at kHz frequencies. In addition to these, in the lower banana (corresponding to softer energy spectra) we also find a very low frequency noise (VLFN) component below ∼1 Hz. In the upper banana (co…

research product

A Broad Iron Line in the Chandra High Energy Transmission Grating Spectrum of 4U 1705-44

We present the results of a Chandra 30 ks observation of the low-mass X-ray binary and atoll source 4U 1705-44. Here we concentrate on the study of discrete features in the energy spectrum at energies below ~3 keV, as well as on the iron Kalpha line, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. Below 3 keV, three narrow emission lines are found at 1.47, 2.0, and 2.6 keV. The 1.47 and 2.6 keV lines are probably identified with Lyalpha emission from Mg XII and S XVI, respectively. The identification of the feature at ~2.0 keV is uncertain because of the presence of an instrumental feature at the same energy. The iron Kalpha line at ~6.5 keV is found …

research product

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480-2446 (Terzan 5)

The newly discovered 11-Hz accreting pulsar, IGR J17480-2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

research product

The optical counterpart to SAX J1808.4-3658 in quiescence: Evidence of an active radio pulsar?

The optical counterpart of the binary millisecond X-ray pulsar SAX J1808.4-3658 during quiescence was detected at V = 21.5 mag by Homer et al. (2001). This star shows a 6% semi-amplitude sinusoidal modulation of its flux at the orbital period of the system. It was proposed that the modulation arises from X-ray irradiation of the intrinsically faint companion by a remnant accretion disk, and that the bulk of the optical emission arises from viscous dissipation in the disk. The serious difficulty in this scenario lies in the estimate of the irradiating luminosity required to match the observational data, that is a factor 10-50 higher than the quiescent X-ray luminosity of this source. To over…

research product

Swings between rotation and accretion power in a binary millisecond pulsar

It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods1, 2, 3. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar4, 5 whose emission is powered by the neutron star’s rotating magnetic field6. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars7, 8 and also by the evidence for a past accretion disc in a rotation-powered milli…

research product

X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…

research product

The iron K-shell features of MXB 1728-34 from a simultaneous Chandra-RXTE observation

We report on a simultaneous Chandra and RossiXTE observation of the low-mass X-ray binary atoll bursting source MXB 1728-34 performed on 2002 March 3-5. We fit the 1.2-35 keV continuum spectrum with a blackbody plus a Comptonized component. Large residuals at 6-10 keV can be fitted by a broad (FWHM ~ 2 keV) Gaussian emission line or, alternatively, by two absorption edges associated with lowly ionized iron and Fe XXV/XXVI at ~7.1 keV and ~9 keV, respectively. In this interpretation, we find no evidence of broad, or narrow, emission lines between 6 and 7 keV. We test our alternative modelling of the iron K shell region by reanalysing a previous BeppoSAX observation of MXB 1728-34, finding a …

research product

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

research product

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

research product

Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model

X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in th…

research product

Detection of a Hard Tail in the X-Ray Spectrum of the Z Source GX 349+2

We present the results of a BeppoSAX observation of the Z source GX 349+2 covering the energy range 0.1-200 keV. The presence of flares in the light curve indicates that the source was in the flaring branch during the BeppoSAX observation. We accumulated energy spectra separately for the non-flaring intervals and the flares. In both cases the continuum is well described by a soft blackbody ($k T_{BB} \sim 0.5$ keV) and a Comptonized spectrum corresponding to an electron temperature of $k T_e \sim 2.7$ keV, optical depth $\tau \sim 10$ (for a spherical geometry), and seed photon temperature of $k T_W \sim 1$ keV. All temperatures tend to increase during the flares. In the non-flaring emissio…

research product

Detailed study of the X-ray and optical/UV orbital ephemeris of X1822-371

Recent studies of the optical/UV and X-ray ephemerides of X1822-371 have found some discrepancies in the value of the orbital period derivative. Because of the importance of this value in constraining the system evolution, we comprehensively analyse all the available optical/UV/X eclipse times of this source to investigate the origin of these discrepancies. We collected all previously published X-ray eclipse times from 1977 to 2008, to which we added the eclipse time observed by Suzaku in 2006. This point is very important to cover the time gap between the last RXTE eclipse time (taken in 2003) and the most recent Chandra eclipse time (taken in 2008). Similarly we collected the optical/UV e…

research product

Chandra Observation of the Persistent Emission from the Dipping Source XB 1916-053

We present the results of a 50 ks long Chandra observation of the dipping source XB 1916-053. During the observation two X-ray bursts occurred and the dips were not present at each orbital period. From the zero-order image we estimate the precise X-ray coordinates of the source with a 90% uncertainty of 0.6''. In this work we focus on the spectral study of discrete absorption features, during the persistent emission, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. We detect, for the first time in the 1st-order spectra of XB 1916-053, absorption lines associated to Ne X, Mg XII, Si XIV, and S XVI, and confirm the presence of the Fe XXV and Fe XXVI abso…

research product

Evidence of a non-conservative mass transfer in the ultra-compact X-ray source XB 1916-053

The dipping source XB 1916-053 is a compact binary system with an orbital period of 50 min harboring a neutron star. Using ten new {\it Chandra} observations and one {\it Swift/XRT} observation, we are able to extend the baseline of the orbital ephemeris; this allows us to exclude some models that explain the dip arrival times. The Chandra observations provide a good plasma diagnostic of the ionized absorber and allow us to determine whether it is placed at the outer rim of the accretion disk or closer to the compact object. From the available observations we are able to obtain three new dip arrival times extending the baseline of the orbital ephemeris from 37 to 40 years. From the analysis…

research product

Chandra X-ray spectroscopy of a clear dip in GX 13+1

The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of $\sim$ 400 km s$^{-1}$ and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation perfo…

research product

XIPE: the X-ray imaging polarimetry explorer

arXiv:1309.6995v1.-- et al.

research product

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511−3057

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

research product

Precise determination of orbital parameters in system with slowly drifting phases: application to the case of XTE J1807-294

We describe a timing technique that allows to obtain precise orbital parameters of an accreting millisecond pulsar in those cases in which intrinsic variations of the phase delays (caused e.g. by proper variation of the spin frequency) with characteristic timescale longer than the orbital period do not allow to fit the orbital parameters over a long observation (tens of days). We show under which conditions this method can be applied and show the results obtained applying this method to the 2003 outburst observed by RXTE of the accreting millisecond pulsar XTE J1807-294 which shows in its phase delays a non-negligible erratic behavior. We refined the orbital parameters of XTE J1807-294 usin…

research product

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

research product

X-Ray Eclipse Time Delays in 4U2129+47

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

research product

The BeppoSAX 0.1–18 keV spectrum of the bright atoll source GX 9+1: an indication of the source distance

We report the results of a long, 350 ks, BeppoSAX observation of the bright atoll source GX 9+1 in the 0.12-18 keV energy range. During this observation GX 9+1 showed a large count rate variability in its lightcurve. From its color-color diagram we selected six zones and extracted the source energy spectrum from each zone. We find that the model, composed of a blackbody plus a Comptonized component absorbed by an equivalent hydrogen column of ~1.4 ¿ 1022 cm-2, fits the spectra in the energy range 1-18 keV well; however, below 1 keV a soft excess is present. We find that the spectrum of GX 9+1, in the 0.12-18 keV energy range, is well fitted by the model above, if we use an equivalent hydrog…

research product

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Serpens X-1

Context. High-resolution X-ray spectra of neutron star low-mass X-ray binaries (LMXBs) in the energy range 6.4-6.97 keV are often characterized by the presence of K alpha transition features of iron at different ionization stages. Since these lines are thought to originate by reflection of the primary Comptonization spectrum over the accretion disk, the study of these features allows us to investigate the structure of the accretion flow close to the central source. Thus, the study of these features gives us important physical information on the system parameters and geometry. Ser X-1 is a well studied LMXB that clearly shows a broad iron line. Several attempts to fit this feature as a smear…

research product

On the soft excess in the x-ray spectrum of circinus X-1: Revisitation of the distance to circinus X-1

We report on a 300 ks BeppoSAX (0.12-200 keV) observation of Circinus X-1 (Cir X-1) at phases between 0.62 and 0.84 and on a 90 ks BeppoSAX observation of Cir X-1 at phases 0.11-0.16. Using the canonical model adopted until now to fit the energy spectrum of this source, large residuals appear below 1 keV. These are well fitted using an equivalent hydrogen column of 0.66¿1022 cm-2, adding absorption edges of O VII, O VIII, and Ne IX in the spectra extracted from the observation at phases 0.62-0.84 and adding absorption edges of O VII, O VIII, Mg XI, and Mg XII and absorption lines of O VIII and Mg XII in the spectra extracted from the observation at phases 0.11-0.16. During the observation a…

research product

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480−2446, during its 2010 outburst

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

research product

The 0.1-100 keV Spectrum of LMC X-4 in the High State: Evidence for a High Energy Cyclotron Absorption Line

We report on the spectral analysis of the X-ray pulsar LMC X-4 in its high state out of eclipse observed by BeppoSAX. During this observation no coherent pulsations are detected. The primary continuum is well described by a power law with a high energy cutoff (E_cutoff ~ E_fold ~ 18 keV). The addition of a cyclotron absorption line at ~100 keV improves the fit significantly. The inferred magnetic moment is 1.1 10^{31} Gauss cm^3, in agreement with the value estimated assuming that the neutron star is at the spin equilibrium, as it has been proposed for this source. The remaining excess at low energies can be fitted by a Comptonization of soft photons by moderately hot electrons (kT ~0.9 keV…

research product

Secular spin-down of the AMP XTE J1751-305

Context. Of the 13 known accreting millisecond pulsars, only a few showed more than one outburst during the RXTE era. XTE J1751-305 showed, after the main outburst in 2002, other three dim outbursts. We report on the timing analysis of the latest one, occurred on October 8, 2009 and serendipitously observed from its very beginning by RXTE. Aims. The detection of the pulsation during more than one outburst permits to obtain a better constraint of the orbital parameters and their evolution as well as to track the secular spin frequency evolution of the source. Methods. Using the RXTE data of the last outburst of the AMP XTE J1751-305, we performed a timing analysis to improve the orbital para…

research product

INTEGRAL serendipitous detection of the gamma-ray microquasar LS 5039

LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a gamma-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial…

research product

Revised orbital parameters of the accreting millisecond pulsar SAX J1808.4-3658

We present temporal analysis of the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000 and 2002. With a technique that uses the chi^2 obtained with an epoch folding search to discriminate between different possible orbital solutions, we find an unique solution valid over the whole five years period for which high temporal resolution data are available. We revise the estimate of the orbital period, P_orb =7249.1569(1) s and reduce the corresponding error by one order of magnitude with respect to that previously reported. Moreover we report the first constraint on the orbital period derivative, -6.6 x 10^-12 < Pdot < +0.8 x 10^-12 s/s. These val…

research product

Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source

The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar Galactic binary systems. A periodicity of 24.27 d with a formal statistical error of 0.03 d was observed in its power spectrum density obtained with RXTE All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study, indicating GX 13+1 as a possible dipping source candidate, we systematically searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to 2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5 …

research product

New insights on the puzzling LMXB 1RXS J180408.9-342058: the intermediate state, the clocked type-I X-ray bursts and much more

1RXS J180408.9--342058 is a low mass X-ray binary hosting a neutron star, which shows X-ray activity at very different mass-accretion regimes, from very faint to almost the Eddington luminosity. In this work, we present a comprehensive X-ray study of this source using data from the Neil Gehrels Swift Observatory, NuSTAR and INTEGRAL/JEM-X. In order to follow the spectral evolution, we analysed the 2015 outburst using Swift data and three Nustar observations. Besides the canonical hard and soft spectral states, we identified the rarely observed intermediate state. This was witnessed by the appeareance of the accretion disk emission in the spectrum (at $kT_{\rm disk}$ $\sim$0.7 keV) and the s…

research product

Order in the Chaos: Spin-up and Spin-down during the 2002 Outburst of SAX J1808.4-3658

We present a timing analysis of the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. A study of the phase delays of the entire pulse profile shows a behavior that is surprising and difficult to interpret: superposed to a general trend, a big jump by about 0.2 in phase is visible, starting at day 14 after the beginning of the outburst. An analysis of the pulse profile indicates the presence of a significant first harmonic. Studying the fundamental and the first harmonic separately, we find that the phase delays of the first harmonic are more regular, with no sign of the jump observed in the fundamental. The fitting of the phase delays of the first harmonic with a model whi…

research product

A relativistic iron emission line from the neutron star low-mass X-ray binary GX 3+1

We present the results of a spectroscopic study of the Fe K{\alpha} emission of the persistent neutron-star atoll low-mass X-ray binary and type I X-ray burster GX 3+1 with the EPIC-PN on board XMM-Newton. The source shows a flux modulation over several years and we observed it during its fainter phase, which corresponds to an X-ray luminosity of Lx~10^37 ergs/s. When fitted with a two-component model, the X-ray spectrum shows broad residuals at \sim6-7 keV that can be ascribed to an iron K{\alpha} fluorescence line. In addition, lower energy features are observed at \sim3.3 keV, \sim3.9 keV and might originate from Ar XVIII and Ca XIX. The broad iron line feature is well fitted with a rela…

research product