6533b7dbfe1ef96bd1270be4

RESEARCH PRODUCT

A broadband spectral analysis of 4U 1702-429 using XMM-Newton and BeppoSAX data

A. SegretoT. Di SalvoAlessandro RiggioN. D'amicoAndrea SantangeloAndrea SannaAngelo GambinoS. M. MazzolaM. Del SantoR. IariaLuciano Burderi

subject

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics01 natural sciencesCoronaStars: neutronSpectral lineNeutron starAccretion accretion diskSpace and Planetary ScienceIonizationStars: Individual: 4U 1702-4290103 physical sciencesReflection (physics)Black-body radiationAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysics

description

Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, called soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which gives information on the innermost region of the system. Our aim is to investigate the poorly studied broadband spectrum of the low mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the 0.3-60 keV energy range and we extracted three 0.1-100 keV spectra of the source analysing three observations collected with the BeppoSAX satellite. We find that the XMM-Newton/INTEGRAL spectrum is well fitted using a model composed of a disc blackbody plus a Comptonised component and a smeared reflection component. We used the same spectral model for the BeppoSAX spectra, finding out that the addition of a smeared reflection component is statistically significant. The best-fit values of the parameters are compatible to each other for the BeppoSAX spectra. We find that the reflection fraction is $0.05^{+0.03}_{-0.01}$ for the XMM-Newton/INTEGRAL spectrum and between 0.15 and 0.4 for BeppoSAX ones. The relative reflection fraction and the ionisation parameter are incompatible between the XMM-Newton/INTEGRAL and the BeppoSAX observations and the characteristics of the Comptonising corona suggest that the source was in a soft state in the former observation and in a hard state in the latter.

https://doi.org/10.1051/0004-6361/201732383