6533b828fe1ef96bd128908a

RESEARCH PRODUCT

Functional Gustatory Role of Chemoreceptors in Drosophila Wings

Maria CapovillaAlain RobichonHussein RaadNeil LedgerJean-françois Ferveur

subject

0301 basic medicinemelanogasterTasteChemoreceptor[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyneuronsInsectmale courtship behavior[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Animals Genetically Modified0302 clinical medicineCytosolConditioning PsychologicalDrosophila ProteinsWings AnimalSensillalcsh:QH301-705.5media_commonAnimal biologybiologyBehavior AnimalAnatomytransductionbitterChemoreceptor CellsDrosophila melanogasterTasteAlimentation et Nutritioncandidate taste receptors;male courtship behavior;apis-mellifera;insect flight;gene;trasnsduction;melanogaster;odorant;neurons;bitterinsect flightanimal structuresmedia_common.quotation_subjectCarbohydratesTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular BiologyFluorescence03 medical and health sciencesBiologie animalecandidate taste receptorsAnimalsFood and Nutrition[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium SignalingRNA Messengerapis-melliferageneDrosophilaodorantWingfungiNeurosciencesWater[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesisbiology.organism_classification[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics030104 developmental biologylcsh:Biology (General)FoodNeurons and CognitionCalciumNeuroscience030217 neurology & neurosurgery

description

Summary: Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca2+ levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. : The function of Drosophila wing chemosensilla is poorly understood. GFP gene reporter assays and electrophysiology are hampered by the nano-architecture of bristles and dense chitin. Raad et al. report that the wing taste organ responds to bitter and sugar stimuli and is critical for exploration of ecological niches.

10.1016/j.celrep.2016.04.040https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01396463/document