Search results for "Drosophila"
showing 10 items of 782 documents
Survival and gene expression under different temperature and humidity regimes in ants
2017
Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…
When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in Drosophila melanogaster
2016
International audience; The environment to which insects have been exposed as larvae and adults can affect subsequent behaviors, such as mating, oviposition, food preference or fitness. Experience can change female preference for oviposition, particularly in phytophagous insects. In Drosophila melanogaster, females avoid laying eggs on menthol rich-food when given the choice. Exposure to menthol during larval development reduces this aversion. However, this observation was not reproduced in the following generation. Recently, we have shown that oviposition-site preference (OSP) differs between wild type D. melanogaster lines freely or forcibly exposed to menthol. After 12 generations, menth…
2016
Sex differences in ageing rates and lifespan are common in nature, and an enduring puzzle for evolutionary biology. One possibility is that sex-specific mortality rates may result from recessive deleterious alleles in ‘unguarded’ heterogametic X or Z sex chromosomes (the unguarded X hypothesis). Empirical evidence for this is, however, limited. Here, we test a fundamental prediction of the unguarded X hypothesis in Drosophila melanogaster , namely that inbreeding shortens lifespan more in females (the homogametic sex in Drosophila ) than in males. To test for additional sex-specific social effects, we studied the lifespan of males and females kept in isolation, in related same-sex groups, …
Ageing via perception costs of reproduction magnifies sexual selection.
2018
Understanding what factors modulate sexual selection intensity is crucial to a wide variety of evolutionary processes. Recent studies show that perception of sex pheromones can severely impact male mortality when it is not followed by mating (perception costs of reproduction). Here, we examine the idea that this may magnify sexual selection by further decreasing the fitness of males with inherently low mating success, hence increasing the opportunity for sexual selection. We use mathematical modelling to show that even modest mortality perception costs can significantly increase variability in male reproductive success under a wide range of demographic conditions. We then conduct a series …
Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana.
2019
Selection experiments offer an efficient way to study the evolvability of traits that play an important role in insects’ reproduction and/or survival and to trace correlations and trade-offs between them. We have exercised bi-directional selection on Drosophila montana flies’ pre-adult development time under constant light and temperature conditions for 10 generations and traced the indirect effects of this selection on females’ diapause induction under different day lengths, as well as on the body weight and cold tolerance of both sexes. Overall, selection was successful towards slow, but not towards fast development. However, all fast selection line replicates showed at the end of selecti…
Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor
2020
Drosophila suzukii is an invasive pest that prefers to lay eggs in ripening fruits, whereas most closely related Drosophila species exclusively use rotten fruit as oviposition site. This behaviour is allowed by an enlarged and serrated ovipositor that can pierce intact fruit skin, and by multiple contact sensory systems (mechanosensation and taste) that detect the optimal egg-laying substrates. Here, we tested the hypothesis that bristles present in the D. suzukii ovipositor tip contribute to these sensory modalities. Analysis of the bristle ultrastructure revealed that four different types of cuticular elements (conical pegs type 1 and 2, chaetic and trichoid sensilla) are present on the t…
2016
Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters…
Inter- and intra-specific genomic divergence in Drosophila montana shows evidence for cold adaptation
2018
This work was supported by the Academy of Finland to AH (projects 132619 and 267244) and to MK (projects 268214 and 272927) and NERC (UK) funding to MGR (grants NE/E015255/1 and NE/J020818/1) and PhD studentship to DJP (NE/I528634/1). The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species. We use branch tests to identify genes showing accelerated divergence in contrasts between col…
Strength of sexual and postmating prezygotic barriers varies between sympatric populations with different histories and species abundances.
2019
The impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species' interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances. All barri…
The “unguarded-X” and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of female lifespan…
2018
Sex differences in ageing and lifespan are ubiquitous in nature. The "unguarded-X" hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex-specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster…