6533b834fe1ef96bd129e0aa

RESEARCH PRODUCT

Inter- and intra-specific genomic divergence in Drosophila montana shows evidence for cold adaptation

Michael G. RitchieRoger K. ButlinRoger K. ButlinKarim GharbiKarim GharbiUrmi TrivediAnneli HoikkalaDarren J. ParkerDarren J. ParkerDarren J. ParkerVenera TyukmaevaR. Axel W. WibergMaaria Kankare

subject

0106 biological sciences0301 basic medicineQH301 BiologyAcclimatizationGenome Insectcomparative genomics01 natural sciencesGenomekylmänkestävyysDrosophilia montanaPhylogenysopeutuminen0303 health scienceseducation.field_of_studybiologygenomiikkaCold TemperatureDrosophilaSynonymous substitutionResearch ArticlemahlakärpäsetNichePopulationGenomics010603 evolutionary biologyIntraspecific competitionQH30103 medical and health sciencesecological adaptationPhylogeneticsDrosophila montanaGeneticsAnimalsDrosophila (subgenus)educationGeneEcology Evolution Behavior and Systematics030304 developmental biologyComparative genomicsta1184DASMolecular Sequence Annotationcold tolerancebiology.organism_classificationDiapauseAcclimatization; Animals; Cold Temperature; Diapause; Drosophila/classification; Drosophila/genetics; Drosophila/physiology; Genome Insect; Molecular Sequence Annotation; Phylogeny030104 developmental biologyEvolutionary biologyta1181Adaptation

description

This work was supported by the Academy of Finland to AH (projects 132619 and 267244) and to MK (projects 268214 and 272927) and NERC (UK) funding to MGR (grants NE/E015255/1 and NE/J020818/1) and PhD studentship to DJP (NE/I528634/1). The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, and do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. We also re-sequenced three populations of D. montana from its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales. Publisher PDF Peer reviewed

10.1101/282582http://dx.doi.org/10.1101/282582