6533b828fe1ef96bd128908d
RESEARCH PRODUCT
Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance.
Julia HollenbachDmitry BudkerDmitry BudkerTeng WuChristian BengsMalcolm H. LevittJohn W. BlanchardJames Eillssubject
Zero field NMRMaterials science010304 chemical physicsMaleic acidHydrogenField (physics)ProtonGeneral Physics and Astronomychemistry.chemical_element010402 general chemistryPolarization (waves)Spin isomers of hydrogen01 natural sciences0104 chemical sciencesMagnetic fieldchemistry.chemical_compoundMagnetizationNuclear magnetic resonancechemistry0103 physical sciencesSinglet statePhysical and Theoretical Chemistrydescription
<div><br></div><div><table><tr><td>We show that in a spin system of two magnetically inequivalent protons coupled to a heteronucleus such as 13C, an adiabatic magnetic field sweep, passing through zero field, transfers proton singlet order into magnetization of the coupled heteronucleus. This effect is potentially useful in parahydrogen-enhanced nuclear magnetic resonance, and is demonstrated on singlet-hyperpolarized [1-13C]maleic acid, which is prepared via the reaction between [1-13C]acetylene dicarboxylic acid and para-enriched hydrogen gas. The magnetic field sweeps are of microtesla amplitudes, and have durations on the order of seconds. We show a polarization enhancement by a factor of 10<sup>4</sup> in the 13C spectra of [1-13C]maleic acid in a 1.4 T magnetic field.</td></tr></table></div>
year | journal | country | edition | language |
---|---|---|---|---|
2019-04-04 | The Journal of chemical physics |